WEKO3
アイテム
Low-dimensional Feature Vector Extraction from Motion Capture Data by Phase Plane Analysis
https://ipsj.ixsq.nii.ac.jp/records/183617
https://ipsj.ixsq.nii.ac.jp/records/1836171e164f99-b236-4d89-a1d4-e0759cad219a
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2017 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2017-09-15 | |||||||||||||||
タイトル | ||||||||||||||||
タイトル | Low-dimensional Feature Vector Extraction from Motion Capture Data by Phase Plane Analysis | |||||||||||||||
タイトル | ||||||||||||||||
言語 | en | |||||||||||||||
タイトル | Low-dimensional Feature Vector Extraction from Motion Capture Data by Phase Plane Analysis | |||||||||||||||
言語 | ||||||||||||||||
言語 | eng | |||||||||||||||
キーワード | ||||||||||||||||
主題Scheme | Other | |||||||||||||||
主題 | [一般論文(テクニカルノート)] motion capture, motion characteristic, feature vector, phase plane analysis | |||||||||||||||
資源タイプ | ||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||
資源タイプ | journal article | |||||||||||||||
著者所属 | ||||||||||||||||
Graduate School of Engineering Science, Akita University | ||||||||||||||||
著者所属 | ||||||||||||||||
Digital Art Factory, Warabi-za Co., Ltd. | ||||||||||||||||
著者所属 | ||||||||||||||||
College of Information and Systems, Muroran Institute of Technology | ||||||||||||||||
著者所属 | ||||||||||||||||
Graduate School of Engineering Science, Akita University | ||||||||||||||||
著者所属 | ||||||||||||||||
Tohoku University of Community Service and Science | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Graduate School of Engineering Science, Akita University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Digital Art Factory, Warabi-za Co., Ltd. | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
College of Information and Systems, Muroran Institute of Technology | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Graduate School of Engineering Science, Akita University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Tohoku University of Community Service and Science | ||||||||||||||||
著者名 |
Takeshi, Miura
× Takeshi, Miura
× Takaaki, Kaiga
× Takeshi, Shibata
× Katsubumi, Tajima
× Hideo, Tamamoto
|
|||||||||||||||
著者名(英) |
Takeshi, Miura
× Takeshi, Miura
× Takaaki, Kaiga
× Takeshi, Shibata
× Katsubumi, Tajima
× Hideo, Tamamoto
|
|||||||||||||||
論文抄録 | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | This paper proposes a method to obtain a low-dimensional feature vector appropriately representing the characteristics of a given motion-capture data stream. The feature vector is derived based on the concept of phase plane analysis. A set of phase plane trajectories are obtained from the temporal variation of the state variables representing the body-segment arrangement. The information on six motion-characteristic properties is extracted from the shapes of the trajectories, and used as the components of a six-dimensional feature vector. The experimental results showed the effectiveness and limitation of the proposed method. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.884 ------------------------------ |
|||||||||||||||
論文抄録(英) | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | This paper proposes a method to obtain a low-dimensional feature vector appropriately representing the characteristics of a given motion-capture data stream. The feature vector is derived based on the concept of phase plane analysis. A set of phase plane trajectories are obtained from the temporal variation of the state variables representing the body-segment arrangement. The information on six motion-characteristic properties is extracted from the shapes of the trajectories, and used as the components of a six-dimensional feature vector. The experimental results showed the effectiveness and limitation of the proposed method. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.25(2017) (online) DOI http://dx.doi.org/10.2197/ipsjjip.25.884 ------------------------------ |
|||||||||||||||
書誌レコードID | ||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||
収録物識別子 | AN00116647 | |||||||||||||||
書誌情報 |
情報処理学会論文誌 巻 58, 号 9, 発行日 2017-09-15 |
|||||||||||||||
ISSN | ||||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||||
収録物識別子 | 1882-7764 |