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Low-dimensional Feature Vector Extraction from Motion
Capture Data by Phase Plane Analysis
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Abstract: This paper proposes a method to obtain a low-dimensional feature vector appropriately representing the
characteristics of a given motion-capture data stream. The feature vector is derived based on the concept of phase
plane analysis. A set of phase plane trajectories are obtained from the temporal variation of the state variables repre-
senting the body-segment arrangement. The information on six motion-characteristic properties is extracted from the
shapes of the trajectories, and used as the components of a six-dimensional feature vector. The experimental results
showed the effectiveness and limitation of the proposed method.
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1. Introduction

Nowadays, motion-capture (Mocap) data are frequently used
for motion analysis. A Mocap data stream is often marked by its
high dimensionality and variable length. This makes it difficult
to compare the characteristics of multiple data streams. Summa-
rizing the characteristics of each data stream as a feature vector
having a specified dimensionality is a typical approach to over-
come this issue. Singular value decomposition (SVD) or princi-
pal component analysis (PCA) is often used to form the feature
vector [1], [2]. In these cases, the dimensionality of the feature
vector generally exceeds that of a Mocap data stream (typically
several tens to over a hundred), due to the use of the eigenvectors
of a Mocap-data matrix. Although a high-dimensional feature
vector may be effective in, for example, high-accuracy classifica-
tion of Mocap data streams, it causes difficulty in intuitively and
easily grasping motion characteristics from its component values.

This paper proposes a method to obtain a useful low-
dimensional feature vector. We adopt the concept of phase plane
analysis [3]. A phase plane consists of two axes corresponding to
a state variable and its time derivative. Analyzing a phase plane
trajectory, obtained from the temporal variation of a state vari-
able, allows us to extract information on different properties from
its shape. We use a set of state variables representing the spatial
arrangement of the body segments, and extract the information on
six motion-characteristic properties, i.e., derive a six-dimensional
feature vector, from their phase plane trajectories.
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2. Method

2.1 Quantification of Body-segment Arrangement
First, we quantify the spatial arrangement of the body segments

at each instant of time. The distribution of the body segments
is evaluated in each of the directions in the three-dimensional
space. According to Ref. [4], the above distribution can be quan-
tified by using the statistics of the coordinate values of principal
joints. Here, we calculate the following standard deviation of the
coordinate values of the nineteen joints shown in Fig. 1 (shoul-
ders, elbows, wrists, fingers, hips, knees, ankles, toes, waist,
neck and head, including end effectors) at every axis of the three-
dimensional space:

σα(n) =

√√√
1
J

J∑
j=1

{p j,α(n) − p̄α(n)}2 (1)

p̄α(n) =
1
J

J∑
j=1

p j,α(n) (α: x, y, or z)

where p j,α(n) (α: x, y or z) is the α-coordinate of the jth joint at
the nth frame (coordinate system: fixed to the pelvis) and J is the
number of the joints used in the analysis (J = 19), respectively.
The value ofσα(n) becomes large when the body segments spread
widely in the α-direction. The correspondence of the obtained
state variables σx(n), σy(n) and σz(n) to the axes of movement
(frontal, vertical and sagittal axes [5]) is shown in Fig. 1.

In actual calculations, the coordinate values are normalized by
the body height to reduce the influence of difference in physical
constitution. The obtained time-series data stream of σα(n) is
filtered by a Gaussian filter (cut-off frequency: 10 Hz) to elimi-
nate noise that adversely affects the calculation of time derivative
shown in the next section.

2.2 Phase Plane Analysis
Here, we introduce the concept of phase plane analysis [3]. An
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Fig. 1 Principal joints used to evaluate the body-segment arrangement.

Fig. 2 Concept of phase plane analysis.

example is shown in Fig. 2. In this case, the horizontal axis cor-
responds to σ being any of σx(n), σy(n) and σz(n) and the ver-
tical axis to its time derivative σ̇. The shape of a phase plane
trajectory shows the characteristics of a given σ. When an area
surrounded by a trajectory is large (top and bottom of Fig. 2), the
motion amount in a given axis-of-movement direction is regarded
as large. In the case that a trajectory is given as a set of overlapped
loops (top and middle of Fig. 2), σ has a highly simple and regular
motion sequence, whereas a complex and irregular characteristic
is shown when a trajectory has a complex and complicated shape
(bottom of Fig. 2). We quantify the above properties as follows.

First, the time-series data stream of the time derivative ofσα(n)
is obtained by the following difference calculation:

σ̇α(n) = {σα(n + 1) − σα(n)}/Δt (2)

where Δt is the sampling time. Next, the tendency of motion
amount in each axis-of-movement direction is quantified. The
mean value of all the areas of single loops included in a given tra-
jectory is used. Here, we define a locus from a negative-direction
zero-cross point of σ̇α(n) to the next point as a single loop, as
shown in Fig. 3. The area of the lth α-direction single loop is
obtained as follows:

S α(l) =
nEα(l)−1∑
n=nSα(l)

sα(n) (3)

sα(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
|σ̇α(n)| + |σ̇α(n + 1)|

2
|σα(n + 1) − σα(n)|

(when sgn(σ̇α(n)) = sgn(σ̇α(n + 1)))
0 (otherwise)

where nSα(l) and nEα(l) are the start and end frames of the lth
α-direction single loop, respectively. The feature quantity rep-
resenting the motion amount in the α-direction throughout the

Fig. 3 Extraction of motion amount from a phase plane trajectory.

whole trajectory is obtained as follows:

qMAα = log

⎧⎪⎪⎨⎪⎪⎩ 1
L

L∑
l=1

S α(l) +C

⎫⎪⎪⎬⎪⎪⎭ (4)

where L is the number of the single loops included in the whole
trajectory and C is a small constant introduced to avoid log(0) (we
set C = e−10), respectively. A logarithm transform is used since
the mean value of S α(l) throughout the whole trajectory varies in
a wide range depending on motion style.

Meanwhile, the tendency of motion complexity in each axis-
of-movement direction is quantified. The value of approximate
entropy (ApEn) [6] is used. ApEn is known as an index repre-
senting the complexity of a time-series data stream. The ApEn
value is obtained as follows:

Σα(n) =

⎡⎢⎢⎢⎢⎣ μ1α(n) μ1α(n + τα) · · · μ1α(n + (m − 1)τα)
μ2α(n) μ2α(n + τα) · · · μ2α(n + (m − 1)τα)

⎤⎥⎥⎥⎥⎦
(μ1α(n) = σ′α(n), μ2α(n) = σ̇′α(n))

d(Σα(n),Σα( j))

= max
i=1,2, k=1,2,···,m

(|μiα(n + (k − 1)τα) − μiα( j + (k − 1)τα)|)

Cm
n =

∑N−(m−1)τα
j=1 θ(r − d(Σα(n),Σα( j)))

N − (m − 1)τα

Φm =

∑N−(m−1)τα
n=1 log Cm

n

N − (m − 1)τα
qApEnα = Φ

m −Φm+1 (5)

where σ′α(n) and σ̇′α(n) are the standardized σα(n) and σ̇α(n)
(with zero mean and unity standard deviation), N is the total num-
ber of frames and θ(x) is the Heaviside function, respectively. We
set the parameters m = 4 and r = 0.5 through trial and error. The
time-delay parameter τα [7] is introduced since the sampling time
of Mocap data is generally much smaller than the time scale of
human motion. Specifically, one fifth of the weighted mean of
single-loop periods is used (weight: S α(l) for each single loop) as
follows:

τα = round

⎡⎢⎢⎢⎢⎢⎣ 0.2∑L
l=1 S α(l)

L∑
l=1

{S α(l)(nEα(l) − nSα(l) + 1)}
⎤⎥⎥⎥⎥⎥⎦ (6)

The qApEnα value becomes large when a phase plane trajectory
shows a complex shape. In actual calculations, we use a fast al-
gorithm [8] to reduce the calculation time.

To sum up, the motion characteristics of a Mocap data stream
is summarized as the following six-dimensional feature vector:
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Fig. 4 Examples of phase plane analysis.

F =
[

qMAx qMAy qMAz qApEnx qApEny qApEnz

]T
(7)

Each of the former three components represents the motion
amount along each axis of movement, whereas each of the lat-
ter three represents the motion complexity in each axis direction.

3. Results

This section presents the experimental results of the pro-
posed method. We used Mocap data streams open to the pub-
lic [9], [10], [11]. In some data streams, periods in which the
whole body is kept in a still state are included before and after
the actual performance. To remove these periods, we selected
only the region sandwiched between the (n1 − 1)th and (n2 + 1)th
frames:

n1: frame first satisfying |σ̇(n)| ≥ | ¯̇σ| − 0.25|σ̇|SD

n2: frame finally satisfying |σ̇(n)| ≥ | ¯̇σ| − 0.25|σ̇|SD

where |σ̇(n)| = {σ̇2
x(n) + σ̇2

y(n) + σ̇2
z (n)}1/2 and | ¯̇σ| and |σ̇|SD are

the mean and standard deviation of the time series of |σ̇(n)|.
Figure 4 shows examples of phase plane analysis. In the case

of Charleston (top of Fig. 4), the loops in the z-direction (i.e.,
sagittal-axis direction) are extremely large compared with those
in the x- and y-directions, and the degree of overlapping is rela-
tively high in all directions. The data stream “93 03” consists of
the repetition of the forward-kick back-step sequence, i.e., a set
of regular motions along the sagittal axis. This tendency is con-
sistent with the shapes of the obtained trajectories and the values
of the feature-vector components shown in the right of Fig. 4. On
the other hand, Antikristos (bottom of Fig. 4) is one of the Cypriot
folk dances characterized by complexity and a combination of
complicated motions of the lower limbs [12]. The trajectories of
this dance provided extremely complicated structures. This ten-
dency is estimated to have been caused by the above complicated
lower-limb motions, and its influence was well reflected in the
values of the feature-vector components.

As mentioned above, the feature vector derived from the phase
plane analysis validly quantifies the characteristics of a given Mo-
cap data stream. Figure 5 shows an application example of the
feature vector. In this example, the motion-characteristic distri-

Fig. 5 Motion-characteristic distribution of dances (analysis method: prin-
cipal component analysis of the phase-plane feature vectors).

bution of 45 Mocap data streams selected from eight dance cate-
gories (bottom of Fig. 5) was visualized. The visualization was
performed by applying PCA to the feature vectors. From the
eigenvector values of the obtained PCs (middle of Fig. 5), the
first PC (PC1) is interpreted as corresponding to “Complexity,”
whereas the second PC (PC2) to “Motion Amount.” The ob-
tained distribution agrees with the impression of each dance cat-
egory; e.g., Antikristos (characterized by complexity as already
mentioned) was plotted in the Complex region, whereas Breaking
(including various intense unit motions [13]) was plotted in the
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Table 1 Results of the leave-one-out cross validation using the 1-nearest-
neighbor classifier.

Phase plane kWAS PCA Similarity Factor

Dimensionality
6 232 228

((3J + 1)k) (3Jk)
MD 1 MD 2 MD 2

Error
C 2 S 1 B 1
ID 1 B 1 C 2
A 1 ID 1

Empirical accuracy 0.889 0.889 0.889
MD: Modern dance, S: Salsa, B: Breaking, C: Charleston,
ID: Indian dance, A: Antikristos.
J: Number of joints (J = 19), k: Number of SVs (or PCs) (we set k = 4.).

Large region, etc.
Table 1 shows the results of another example. The leave-

one-out cross validation [14] was performed by applying the 1-
nearest-neighbor classifier to the Mocap data set identical to that
of Fig. 5. We compared the proposed method with kWAS [1] and
PCA Similarity Factor [2]. Although the dimensionality of the
proposed feature vector is extremely lower than those of kWAS
and PCA Similarity Factor, all methods gave the same empirical-
accuracy value. This suggests that the proposed feature vector
extracts the characteristics of each dance extremely efficiently.
However, an error occurred in the dance category Antikristos in
which the other methods caused no error. This may indicate the
limitation of the low dimensionality of the feature vector.

4. Conclusions

The main contribution of this paper is to provide a useful low-
dimensional feature vector appropriately characterizing a Mocap
data stream. The experimental results showed the effectiveness
and limitation of the proposed method. To clarify the application
range of the proposed method will be the subject of future work.
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