WEKO3
アイテム
Multidimensional Uniformity of Pseudorandom and Quasirandom Sequences
https://ipsj.ixsq.nii.ac.jp/records/12118
https://ipsj.ixsq.nii.ac.jp/records/12118c90aff44-8d26-42e3-bee2-713e47ca5a67
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2000 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2000-12-15 | |||||||
タイトル | ||||||||
タイトル | Multidimensional Uniformity of Pseudorandom and Quasirandom Sequences | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Multidimensional Uniformity of Pseudorandom and Quasirandom Sequences | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | 論文 | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
その他タイトル | ||||||||
その他のタイトル | 数値シミュレーション | |||||||
著者所属 | ||||||||
Faculty of Information Sciences Hiroshima City University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Faculty of Information Sciences, Hiroshima City University | ||||||||
著者名 |
Takao, Tsuda
× Takao, Tsuda
|
|||||||
著者名(英) |
Takao, Tsuda
× Takao, Tsuda
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | It has been said that quasirandom sequences have a better uniform distributionin multidimensional spaces than pseudorandom sequences and are therefore superior for numerical integration of multidimensional functions.In this paper however it is numerically demonstrated that there is a certain critical number of dimensions $k_c$between 20 and 40 dimensions and that in higher dimensions than $k_c$ pseudorandom and Richtmyer sequences have lower discrepancy and hence better uniformity than quasirandom sequences yielding substantially smaller errors to numerical integration. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | It has been said that quasirandom sequences have a better uniform distributionin multidimensional spaces than pseudorandom sequences,and are therefore superior for numerical integration of multidimensional functions.In this paper, however,it is numerically demonstrated that there is a certain critical number of dimensions $k_c$between 20 and 40 dimensions, and that in higher dimensions than $k_c$,pseudorandom and Richtmyer sequences have lower discrepancy, and hence better uniformity,than quasirandom sequences, yielding substantially smaller errors to numerical integration. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN00116647 | |||||||
書誌情報 |
情報処理学会論文誌 巻 41, 号 12, p. 3323-3331, 発行日 2000-12-15 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-7764 |