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Regular Paper

Multidimensional Uniformity of Pseudorandom and

Quasirandom Sequences

Takao Tsuda†

It has been said that quasirandom sequences have a better uniform distribution in multi-
dimensional spaces than pseudorandom sequences, and are therefore superior for numerical
integration of multidimensional functions. In this paper, however, it is numerically demon-
strated that there is a certain critical number of dimensions kc between 20 and 40 dimensions,
and that in higher dimensions than kc, pseudorandom and Richtmyer sequences have lower
discrepancy, and hence better uniformity, than quasirandom sequences, yielding substantially
smaller errors to numerical integration.

1. Introduction

Monte Carlo methods with pseudorandom
numbers have long been used for numerical in-
tegration of functons defined in a multidimen-
sional space. See, for example, Ref. 1). The
number of dimensions of the numerical integra-
tion has reached as high as a few hundred (or
even more) depending on the current applica-
tion areas. Consider, for example, the search for
a potential minimum of a many-atom molecule
configuration using the Lennard-Jones poten-
tial model 2). The search relies on a genetic
algorithm 3), so that the best solution known
at one time was actually the second best, and
was replaced later by a better globally mini-
mal solution. To remedy the incompetence of
the algorithm, another algorithm has been pro-
posed to verify whether the minimum captured
is a global minimum 4). To execute this algo-
rithm, one has to perform numerical integration
in a 300-dimensional space when the problem
on hand is a 100-atom cluster. Another exam-
ple of current interest is the numerical solution
of stochastic differential equations. The numer-
ical computation can be recast as the numerical
integration of a multiple integral 5) whose num-
ber of dimensions amounts to the number of
divisions of the time interval. If one divides the
time interval over which the solution is sought
into 100 equal subdivisions, then the number of
dimensions of the integral is 100.
On the other hand, in a few monographs, it is

conclusively stated that quasirandom sequences
have better uniformity than pseudorandom se-
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quences, and hence are superior to pseudoran-
dom sequences for the purpose of numerical
integration. See p.10 of Ref. 7) and p.182 of
Ref. 6). The purpose of this paper is to demon-
strate numerically that there is a certain critical
number of dimensions, kc, above which the uni-
formity is worse with quasirandom sequences
than with pseudorandom sequences, and thus
that the supposed superiority of quasirandom
sequences with regard to numerical integration
is questionable.

2. Errors of Numerical Integration
and Discrepancy

2.1 A Point Sequence in a Multidi-
mensional Space and the Defini-
tion of Discrepancy

Let the point sequence
P = {xn, n = 0, 1, 2, · · · , N − 1}

in a k-dimensional hypercube [0, 1]k, and let
y (=(y1, y2, · · · , yk)) also belong to the same
hypercube [0, 1]k. E(y) is the partial vol-
ume [0, y1) × [0, y2) × · · · × [0, yk) in the k-
dimensional hypercube. #(E(y);N) denotes
the number of points that have fallen inside
the partial volume E(y) among all the points
xn (n = 0, 1, 2, · · · , N−1) of the point sequence
P . The discrepancy D

(k)
N of the N -point set P

in a k-dimensional space is defined to be

D
(k)
N = sup

y∈[0,1]k

∣∣∣∣∣
#(E(y);N)

N
−

k∏
i=1

yi

∣∣∣∣∣ (1)

Discrepancy is defined for any arbitrary and re-
producible point sequence. It can therefore be
defined for a pseudorandom sequence generated
by arithmetic operations. The concept of dis-
crepancy dates back to 1960 or earlier, although
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the term itself had not been coined at that
time, and can be found in Ref. 10), where not
only the L∞-norm as in the above Eq. (1) but
also the L2-norm was used. In this paper, all
the objective sequences are predetermined se-
quences that include pseudorandom sequences,
and therefore the definition of Eq. (1) by the
L∞ norm is considered.
2.2 Errors of numerical integration
By using the formula for discrepancy (1), the

error of numerical integration is given by∣∣∣∣∣
∫

[0,1]k
f(x)dx− 1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣≤V (f)D(k)
N

(2)
where V (f) is the variation of the function
f(x). For details, see p.181 of Ref. 6). V (f)
in the one-dimensonal case may be expressed
as

∫ 1

0
|df(x)|. This differs from the probabilis-

tic error bound of the Monte Carlo integration.
It gives the deterministic error bound of nu-
merical integration. In light of the definition
D

(k)
N the error bound can be used for any pre-

determined and reproducible sequences includ-
ing pseudorandom sequences. The main issue is
the behaviour of the discrepancy for very large
values of k.

3. Main Random Number Generators

There are so many variants and details are
not shown; readers are referred to Ref. 6) for
more details. Here, only the main issues are
summarized.
3.1 Pseudorandom Numbers (PRN

for short)
3.1.1 Linear Congruential Methods
As is well known, pseudorandom numbers in

this category have lattice structures whose na-
ture has been well studied. These unfavourable
structures can be removed by adding shuffles.
Statistical tests corroborate the substantial im-
provement achieved by the use of shuffles 8).
The deficiency of random numbers of this type
is that the period is too short for some appli-
cations. This defect can be averted by using
64-bit integer arithmetic. There has been some
recent work to lengthen the period. Numer-
ical observation by PRN is performed in this
paper, using linear congruential pseudorandom
numbers with shuffling added. The shuffling
algorithm is as follows:
Those random numbers generated by the lin-
ear congruential method are stored temporar-

ily in a number of entries of a table, and which
one of them is to be picked out and used next
is determined by the raw random number be-
fore shuffling. The table T (i) (i = 1, 2, · · · , t)
is provided for temporary storage. The number
of entries, namely, the size of the table, should
not be a power of 2. In the following, m is the
largest integer plus 1, and hence is 232 in the
case of single-precision integers.
(1) T (i)← yi (i = 1, 2, · · · , t)

[generate t random numbers]
(2) y ← yi+1

[generate one more and let it be y ]
(3) j ← 	ty/m
+ 1

[pick out an entry by y ]
(4) y ← T (j); output y/m

[output the random number normalized
to [0,1]]

(5) T (j) ← next y; return to (3) with this y
[generate a new y and repeat]

	x
 is the floor of x that gives an integer by
ignoring those digits below the decimal point.
The larger the table size is, the more the qual-
ity of the random numbers is improved. The
number of entries should be greater than 15 8).
Let pseudorandom numbers be generated by

the linear congruence:
yi+1 = 11× yi + 0 (mod 232) (3)

From the pseudorandom sequences thus gener-
ated, y0, y1, y2, · · ·, let the x- and y-coordinates
of a point be yi/m and yi+1/m, respectively.
The distribution of 10,000 such points is shown
in Fig. 1. The initial value is given by y0 = 100.

Fig. 1 Without shuffling.
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Fig. 2 With shuffling added.

Figure 2 shows the results obtained by us-
ing the same formula, the same initial value as
Fig. 1, and a table size for shuffling of 100. The
effect of shuffles is evident. (This can indeed
be confirmed by statistical χ2-tests for spatial
uniformity.)
3.1.2 M Sequences (Generalized Feed-

back Shift Register: GFSR)
This type of random number generators also

yield numbers with lattice structures, and is an-
alyzed in detail 6). There are many variants.
The period can be extremely long, and it is im-
possible to exhaust the whole period by con-
tinual number generation on a computer. For
applications, therefore, one actually uses only
a short segment of the whole sequence. It is
almost negligibly short as compared with the
length of the whole period. One main defect of
this type of generators is that there is no the-
oretical guarantee of the probabilistic quality
over this partial sequence used in practice.
One may summarize as follows:

Pseudorandom numbers are random and
chaotic. The term random means that numbers
generated assume values that are amenable to
probabilistic interpretation. The term chaotic
means that the arrangement of point positions
of the point sequence is in disorder, but yet it is
such that the points cover the whole interval (or
domain) of interest. The pseudorandom num-
bers are completely reproducible, and thus in
this sense they are predetermined sequences for
which the concept of discrepancy is applicable
and the integration error is given by Eq. (2).

3.2 Quasirandom Numbers (QRN for
short)

3.2.1 Richtmyer Sequence
QRN was first considered by Richtmyer 9),10).

Although the term QRN was then used by
Richtmyer, the Richtmyer sequence is not con-
sidered within the framework of today’s QRN.
As is shown later, however, the Richtmyer se-
quence shows good uniform distribution in both
low and high multidimensional spaces. Take
an algebraic irrational number (which may be
called a seed) and multiply it by positive inte-
gers (×1,×2,×3, · · ·). The Richtmyer sequence
uses the fractional parts of the numbers thus
obtained. The time cost for generation is quite
low; however, when a long sequence is needed,
care must be exercised to compensate for the
loss of lower significant digits as the multipli-
cation proceeds. Let the Richtmyer sequence
be called Richtmyer for short. As is described
later, prime numbers are generated in ascending
order. The first k of them are used as seeds, af-
ter square-root operations on each of them, for
the generation of a k-dimensional point.
Richtmyer is not random but chaotic. On

the same computer, it is a reproducible, and
hence predetermined, sequence. The concept
of discrepancy is again applicable, and the in-
tegration error is given by Eq. (2). The term
predictable sequence is ambiguous, but at any
rate Richtmyer can generate the i-th number of
the sequence, no matter what i (> 0) is men-
tioned.
3.2.2 Halton and Other QRNs
Today, as QRN, such sequences as

Hammersley, Halton, Faure, Sobol sequences
and the generalized Niederreiter sequence (in-
clusive of those just mentioned) are known. See
Ref. 6) for details. In this paper, the Halton se-
quence is taken as representative of all QRNs.
Let the sequence be called Halton for short.
The common feature of QRNs is that their the-
oretical upper bound of discrepancy is given by
the same expression (4) below.
Unlike PRN (random) and Richtmyer (chao-

tic), QRNs as represented by Halton are such
that the placement of the subsequent points of
the point sequence is regular, and hence repro-
ducible.
Let N points of x0,x1,x2, · · · be taken in

the k-dimensional hypercube [0, 1]k. When the
discrepancy D

(k)
N of those points is bounded

from above by Eq. (4), they are called a low-
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discrepancy sequence, or QRN. c(k) of Eq. (4)
depends only on the number of dimensions k.

D
(k)
N ≤ c(k)

(logN)k

N
(4)

Halton, which is typical of QRNs, is subject to
the following expression:

D
(k)
N ≤ c(b1, · · · , bk)

(logN)k

N

+O

(
(logN)k−1

N

)
(5)

where c(b1, · · · , bk) ≈
∏k

i=1
bi

log bi
, so that for a

large value of prime b used as a base, namely,
in the case of high dimensionality, the value of
c(b1, · · · , bk) may also be large, giving a large
value to the discrepancy D

(k)
N .

Both Eqs. (4) and (5) give upper bounds of
what is shown on the left side. This means that
even if the right-hand side is large, the left-hand
side, the discrepancy, may not be large. Con-
cerning the lower bound of QRN’s discrepancy,
we have the conjecture:

D
(k)
N > c1(k)

(logN)k−1

N
(6)

which is supposed to hold for an arbitrary k
dimensions (k > 2) and for an arbitrary point
set in hypercube [0, 1]k, and where coefficient
c1(k) is some positive constant that depends
only on k. As will be demonstrated later in
this paper, because the associated discrepancy
D

(k)
N does not increase with the increase of the

number of dimensions k, Richtmyer and PRN
do not comply with this conjecture.

4. Generation of a k-Dimensional
Point Sequence

In the k-dimensoinal hypercube (k =
1, 2, · · ·), N points are generated one after an-
other in order to observe the discrepancy. The
method of point generation is explained below.
While the number of k-dimensional points, N ,
is kept at 107 throughout the experiment, we
vary the number of dimensions k up to 200.
4.1 k-Dimensional PRN
Given the initial value y0 = 123456, the linear

congruential method
yi+1 = 65531× yi + 0 (mod m),

m = 232 (7)

is dovetailed with the shuffling algorithm. Let
the i-th random number thus obtained, and
then normalized to a number over [0,1]-interval,
be denoted by prn(i). The table size (the num-

Table 1 PRN sequence (0 ≤ k ≤ kmax).

No. of points k-dimensional coordinates
point 1 (prn(1), prn(2), prn(3), · · · , prn(k))
point 2 (prn(kmax + 1), · · · , prn(kmax + k))
point 3 (prn(2kmax + 1), · · · , prn(2kmax + k))

· · · · · ·
point N (prn((N − 1)kmax + 1), · · · , · · ·)

Table 2 Richtmyer sequence.

No. of points k-dimensional coordinates
point 1 ([1× b1], [1× b2], · · · , [1× bk])
point 2 ([2× b1], [2× b2], · · · , [2× bk])
point 3 ([3× b1], [3× b2], · · · , [3× bk])

· · · · · ·
point N ([N × b1], [N × b2], · · · , [N × bk])

ber of entries) is 100. Lattice structures disap-
pear as a result of shuffling. The coordinates of
each point are shown in Table 1.
4.2 k-Dimensional Richtmyer
k-dimensional Richtmyer points are gener-

ated, with k mutually independent algebraic ir-
rational numbers used as seed numbers. In the
case where the number of dimensions is k, let
the i-th prime (0 < i ≤ k) be pi. By taking
the square root of each pi, we have seed bi (=√
pi), which will be multiplied by 1, 2, 3, · · ·, and

only the fractional parts are used. Since there
are primes 2, 3, 5, 7, · · ·, the first k-dimensional
Richtmyer point is given by

(0.414213562 · · · , 0.732050808 · · · ,
0.236067977 · · · , · · · , [bi], · · · , [bk]),

where square brackets [x] indicate the fractional
part of x. Thus the coordinates of the N k-
dimensional Richtmyer points are as shown in
Table 2.
Because of the finite word-length of a com-

puter, the lower digits of an irrational number
are lost when N is large. For a large value of
N , one has to use an appropriate multiprecision
integer arithmetic to guarantee correctness.
In both cases of PRN and Richtmyer, plots of

points in partial 2-dimensions where the 99-th
coordinate values are taken on the x-axis, and
the 100-th coordinate values on the y-axis do
not differ in uniformity from those plots where
the first coordinate values are taken on the x-
axis and the second coordinate values on the
y-axis.
4.3 k-Dimensional Halton
Out of the QRNs known as Hammersley,
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Table 3 Halton sequence.

No. of points Coordinates (base 2, base 3, base 5)
point 1 (0.5, 0.33 · · · , 0.2)
point 2 (0.25, 0.66 · · · , 0.4)
point 3 (0.75, 0.11 · · · , 0.6)

· · · · · ·

Halton, Faure, Sobol, and generalized
Niederreiter sequences, Halton is chosen as rep-
resentative for the object of observation in this
paper. There may be some difference in be-
haviour between these QRNs, but all of them
share the same characteristic with regard to the
discrepancy, which increases with the increase
in the number of dimensions k.
Halton’s point sequence is generated as fol-

lows. First, consider 1-dimensional Halton.
With base b, which may be taken for prime 2 for
example, integer n is transformed into a b-ary
digit number:

am× bm+ am−1× bm−1+ · · ·+ a1× b+ a0,
where 0 ≤ aj < b, 0 ≤ j ≤ m, m = [logn].
The n-th number of Halton with base b, φb(n),
is therefore given by

φb(n) =
a0

b
+

a1

b2
+ · · ·+ am

bm+1
. (8)

In the case of 3 dimensions, for example, if the
primes 2, 3, 5 are taken for the bases, the co-
ordinates of the Halton points are as shown in
Table 3.
In this way the coordinate values of the k-

dimensional Halton points use, for bases bi (i =
1, 2, · · · , k), the primes that are generated in as-
cending order with the initial prime being 2. In-
evitably, the base value for a very high dimen-
sion becomes very large, and the time cost for
generating the corresponding coordinate value
substantially increases.
In the case of Halton, points plotted in partial

2 dimensions, where the 99-th coordinate values
(b99 = 523) are taken on the x-axis and the 100-
th coodinate values (b100 = 541) on the y-axis,
are remarkably bad in uniformity as compared
with those plots where the first coordinate val-
ues (b1 = 2) are taken on the x-axis and the
second coordinate values (b2 = 3) on the y-axis.
Figures 3 and 4 show the point distribution,
where the number of points in each point se-
quence is 10,000.

5. Observation of Discrepancy
5.1 Method of Observation and the

Significance
Discrepancy (1) based on the L∞-norm is de-

Fig. 3 Halton dim. 1 and dim. 2.

Fig. 4 Halton dim. 99 and dim. 100.

fined as the supremum of the absolute values of
the algebraic difference between the observed
frequencies of k-dimensional points falling in
the infinite number of hyperrectangles [0, y1)×
[0, y2) × · · · × [0, yk) (where y ∈ [0, 1]k) and
the respective theoretical frequencies (propor-
tional to the volumes of the hyperrectangles).
The test hyperrectangles, so to say, are infinite
in number, and what is more, the supremum
is required, so that the theoretical value of the
discrepancy is difficult to obtain by numerical
measurement. By way of approximation, there-



3328 IPSJ Journal Dec. 2000

fore, the infinite number of hyperrectangles are
replaced by as many test hyperrectangles as
possible, each having a different shape, and the
observed maximum is taken for an approximate
estimate of the supremum value. The number
of points in the k-dimensional hypercube, N ,
is taken as large as the computer time allows,
and in the subsequent observations N is kept
at N = 107 throughout this paper. As already
mentioned, the dependence of the discrepancy
D

(k)
N on the number of dimensions k is observed

by extensively varying k. The upper limit of k
in the observation is denoted by kmax.
As regards the programming technique, the

outermost loop generates a kmax-dimensional
point whose first k coordinates give a k-
dimensional point (1 ≤ k ≤ kmax). This is
repeated N times, so that in the end a total
of N × kmax random numbers (∈ [0, 1]) are
generated and used. On each generation of a
kmax-dimensional point, inner loops do check-
ing to see if the resulting k-dimensional point
(1 ≤ k ≤ kmax) has fallen inside the numerous
k-dimensional test hyperrectangles that have
been prepared as explained in Section 5.2.
In other words, the point sequence is fixed as

generated, whereas the number of dimensions k
and the size and shape of the target test hyper-
rectangle are varied. For each k (1 ≤ k ≤ kmax)
separately, the maximum of the absolute val-
ues of the difference between the observed fre-
quency and the corresponding theoretical fre-
quency is recorded.
The relation between the observed discrep-

ancy, D(k)
N (observed), the true discrepancy (1),

D
(k)
N , and its theoretical upper bound (4) is:

D
(k)
N (observed) < D

(k)
N (true)

≤ D
(k)
N (upperbound) (9)

This means that the true value of the discrep-
ancy is always worse (or larger) than the ob-
served value. Two kinds of observations were
carried out: one for the case where kmax = 100,
called Observation 1, and the other for the
case where kmax = 200, called Observation 2.
The total number of test hyperrectangles of Ob-
servation 2 was reduced to one fourth of that in
Observation 1, since otherwise the computation
time would have become prohibitive.
Suppose the length of a peripheral edge is 0.5.

A 100-dimensional hypercube would then have
a volume of 2−100, and this volume would be
none but zero when compared with 1, the unit

hypercube volume, in floating-point arithmetic.
This suggests that the selection of test hyper-
rectangles is not easy but really counts.
5.2 Results of Observation
In place of infinitely many hyperrectangles

[0, y1)× [0, y2)×· · ·× [0, yk) for ∀y ∈ [0, 1]k, nu-
merous hyperrectangles are considered for the
purpose of observation and those points which
fall inside them are counted. Each of the fol-
lowing regionX (X = 1, · · · , 8) is defined as an
array with 10 elements:
• Region of the first observation:

region1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.99}

• Region of the second observation:

region2 = {0.9, 0.95, 0.3, 0.8, 0.85,
0.75, 0.2, 0.9999, 0.1, 0.5}

• Region of the third observation:

region3 = {0.95, 0.99, 0.93, 0.5, 0.97,
0.91, 0.999, 0.7, 0.995, 0.9}

• Region of the fourth observation:

region4 = {0.01, 0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.35, 0.4, 0.45}

• Region of the fifth observation:

region5 = {0.91, 0.92, 0.93, 0.94, 0.95,
0.96, 0.97, 0.98, 0.99, 0.999}

• Region of the sixth observation:

region6 = {0.81, 0.82, 0.83, 0.84, 0.85,
0.86, 0.87, 0.88, 0.89, 0.9}

• Region of the seventh observation:
region7 = {0.991, 0.992, 0.993, 0.994,

0.995, 0.996, 0.997, 0.998,
0.999, 0.9999}

• Region of the eighth observation:
region8 = {0.9999, 0.999, 0.998, 0.997,

0.996, 0.995, 0.994, 0.993,
0.992, 0.991}

As already stated, the total number of points
in the point sequence is fixed at N = 107, and
N × kmax random numbers are used.
5.2.1 Observation 1 (kmax = 100)
All of the above regionX (X = 1, · · · , 8)

are used. Start with region1. First, in the
outermost loop of the program, one kmax-
dimensional point is generated. The i-th
coordinate value of this point is compared
with the i(mod10)-th element of region1 for
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Fig. 5 Discrepancy up to 100 dimensions.

Fig. 6 Discrepancy up to 200 dimensions.

i = 1, 2, · · · , k. If the i-th coordinate
value is smaller than the corresponding ele-
ment of region1 for all i, then this point is
judged to have fallen inside the relevant k-
dimensional test hyperrectangle, and is counted
as such. This operation is repeated until
k = kmax. Next, each of the elements of
region1 is cyclic-shifted in such a way as
to yield {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99,0.1}.
The same operation is repeated for these array

elements. This cyclic shift is repeated as many
times as the size of array region1 (namely, 10
times). Next, consider a k-dimensional hyper-
cube whose edge length is given by the i-th el-
ement of region1 (i = 1, 2, · · · , 10), and count-
ing is done to see how many of the points of
the point sequence have fallen inside the hy-
percube. For region1, there are 10 test hy-
percubes for each of k up to kmax-dimensions.
The whole process is repeated, by the outer-
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most loop of the program, on the second point,
the third point, · · · until all of the N points of
the point sequence in kmax-dimensions are ex-
hausted. Since the point sequence remains the
same, this means that the shapes of the test hy-
perrectangles have been changed. By means of
these counting processes, comparisons are made
against theoretical frequencies (namely, the vol-
umes of test hyperrectangles) and the maxi-
mum of the absolute values of the differences
is recorded.
After the same comparing and count-

ing operations have been repeated over
region2, · · · , region8, the final maximum of the
absolute values of the differences is obtained as
D

(k)
N (observed). The result of Observation 1 is

shown in Fig. 5.
5.2.2 Observation 2 (kmax = 200)
The range of the numbers of dimensions k

is doubled. Because of the computing time,
only region5 and region6 are used. Besides
the computing time, the reason why these two
regions are used is that, with increasing num-
bers of dimensions, the volumes of test hyper-
rectangles become much too small to allow the
points falling therein to be counted, and most
probably one has virtually #(E(y);N)

N = 0; this
situation is better avoided. The result of Ob-
servation 2 is shown in Fig. 6.

6. Conclusions

Discrepancy was defined as an index that
designates the uniformity of the spatial dis-
tribution of multidimensional point sequences.
The respective discrepancies of pseudorandom
sequences, Richtmyer sequences, and quasir-
andom sequences were estimated by numeri-
cal observation. There are quite a few vari-
ants of quasirandom sequences, but they share
the same characteristics with respect to the di-
mensional dependence. Halton sequences were
chosen as representative of quasirandom num-
bers. The findings were that there is a cer-
tain critical number of dimensions, kc, between
20 and 40 dimensions, and that in multidi-
mensions higher than kc, pseudorandom and
Richtmyer sequences have smaller values of dis-
crepancy than quasirandom sequences, and are
thus superior to them for numerical integration.
In multidimensions lower than kc, Halton and
Richtmyer sequences are, in that order, superior
with regard to the values of discrepancy. On
the whole, though Richtmyer sequences are not

considered to be quasirandom sequences, they
show good behaviour over the whole range of
dimensions. Pseudorandom sequences, as dove-
tailed with shuffles, show good uniformity sim-
ilar to Richtmyer sequences in multidimensions
higher than kc. One can therefore conclude
that, although quasirandom sequences may be
useful for numerical integration in low multidi-
mensions, they are not necessarily superior in
numerical integration in high multidimensions.
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