WEKO3
アイテム
Bipartition of Biconnected Graphs
https://ipsj.ixsq.nii.ac.jp/records/117070
https://ipsj.ixsq.nii.ac.jp/records/117070be4dc77d-ea24-403a-aa5c-a840e826ee8e
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | National Convention(1) | |||||
---|---|---|---|---|---|---|
公開日 | 1989-10-16 | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | Bipartition of Biconnected Graphs | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||
資源タイプ | conference paper | |||||
著者所属(英) | ||||||
en | ||||||
Tohoku University | ||||||
著者所属(英) | ||||||
en | ||||||
Tohoku University | ||||||
著者所属(英) | ||||||
en | ||||||
Tohoku University | ||||||
論文抄録(英) | ||||||
内容記述タイプ | Other | |||||
内容記述 | We present a linear algorithm for solving bipartition problem for a biconnected graph. The bipartition problem is the following : Input : (1) an undirected graph G=(V, E) with n=|V| vertices and m=|E| edges ; (2) s_1, s_2 ∈ V, s_1 ≠ s_2 ; and (3) two natural numbers n_1, n_2 ∈ N such that n_1 + n_2 = n. Output : a partition(V_1, V_2)of vertex set V such that (a) s_1 ∈ V_1 and s_2 ∈ V_2 ; (b) |V_1| = n_1 and |V_2| = n_2 ; and (c) V_1 and V_2 induce connected subgraphs of G. Fig. 1 depicts an instance of the problem above and a solution. Clearly the problem has no solution for some graphs. Furthermore the problem determining whether theabove problem has a solution is NP-complete if G may be not biconnected [DF]. However, Gyori and Lovasz independently proved the following theorem. THEOREM 1 [Gy, Lo]. If G is k-partition problem has a solution. the k-partition problem is one to find k disjoint connected subgraphs in a graph each of which contains a specified vertex and has a specified number of vertices. Since the bipartition problem is a subproblem of k-partition problem, it necessarily has a solution if the given graph G is biconnected. Although the proof by Gyori provides a polynomial algorithm if k = 2, naive implementation of the algorithm does not run in linear time. Our algorithm is not based on the proofs but based on characteristics of a depth first search tree in a biconnected graph. | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AN00349328 | |||||
書誌情報 |
全国大会講演論文集 巻 第39回, 号 情報理論及び基礎技術, p. 71-72, 発行日 1989-10-16 |
|||||
出版者 | ||||||
言語 | ja | |||||
出版者 | 情報処理学会 |