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1. INTRODUCTION

We present a linear algorithm for solving bipartition problem
for a biconnected graph. The biparitition problem is the following:

Input : (1) an undirected graph G = (V,E) with n=|V|
vertices and m = |E| edges;
(2) 51,82 €V, 81 #sz; and
(3) two natural numbers m,m € N such that
n+my=n

Qutput : a partition (V;,V3) of vertex set V such that

(@) s;1 € V1 and 53 € V3,
®) |Vi| = m and |[V2] = m; and
(¢) V1 and V, induce connected subgraphs of G.
Fig. 1 depicts an instance of the problem above and a solution.
Clearly the problem has no solution for some graphs.
Furthermore the problem determining whether the above problem

has a solution is NP-complete if G may be not biconnected[DF]. -

However, Gyori and Lovasz independently proved the following
theorem.

THEOREM 1 [GyLol. If G is k-connected, then the
k-partition problem has a solution. ]

The k-partition problem is one to find k disjoint connected
subgraphs in a graph each of which contains a specified vertex and
has a specified number of vertices. Since the bipartition problem is
a subproblem of k-partition problem, it necessarily has a solution
if the given graph G is biconnected. Although the proof by Gydri
provides a polynomial algorithm if k = 2, naive implementation of
the algorithm does not run in linear time.

Our algorithm is not based on the proofs but based on
characteristics of a depth first search tree in a biconnected graph.

n;=6 @ :vertexinV,
n=5 © :vertexinV,
Fig. 1 An instance of the bipartition problem and

a solution(thick lines depict the subgraphs induced
from V, and V,).

2. PRELIMINARIES

Let G = (V,E) be an undirected connected graph with vertex
set V and edge set E. The vertex set and edge set of a graph H
are denoted by V(H) and E(H), respectively. For an edge
(v,w) in a graph G, G/(v,w) is the graph obtained from G by
contracting edge (v, w), that is, identifying two vertices v and u
and removing the resulting self loop and multiple edges, if any.
For two vertices v and w in G, G+ (v,w) is the graph obtained
by adding new edge (v,w) to G if G does not include edge
(v, w), or G otherwise. For a set X of vertices in V(G), G — X
is the graph obtained by removing all the vertices in X and all the
edges incident with vertices in X from G.

Let T be a depth first search tree of G. For each vertex
v € V, the set of descendants of v including v itself is denoted by
DES(v). In this paper, ancestors and descendants of v € V include
v itself. Clearly the following lemma holds.

LEmMA 1. Let G be an undirected graph and T' be a depth
first search tree of . Then G is biconnected if and only if the
root of T' has exactly one child and, for each vertex v other than
the root and its child, an edge of G joins an ancestor of the
grandparent of v and a descendant of v. |

3. ALGORITHM

In this section, we present a linear algorithm PART2 for
solving bipartition problem for a biconnected graph G. Since the
subgraphs of G induced from V; and 1, cannot include edge
(s1,s2) even if there is, a solution of the bipartition problem for
G + (s1,s2) is always one for G. Therefore, in the algorithm
below, we may assume that G has edge (si,sp). Let T be a
depth first search tree with s; as the root and s; as the child of
the root. Since an edge joins s; and s;, we can find a depth first
search tree like above by first searching s;. The algorithm is the
following.

function PART2(G, T, 51,82, 11, m);
begin
1) if m =1 then return({s; }, V(@) - {s1})
elseif n, = 1 then retunn(V(G&) - {s2}.{s2})s
(2) let a be an arbitrary child of s;;
if s has more than one child then {see Fig.2. Note that
Lemma 1 implies that, for every child v of sp, s; is adjacent
to a vertex in DES(v)}
(2.1) if |DES(a) U{s2}] < m then
begin {include DES(a) into V;}
V2 1= DES(a);
G =G =V
Ty =T — Va3
(W1, V3) = PART2(G2, T, 51, 52,
1, [V(Ga)| —m);
return (V;,V, UVy)
end
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(22) else {|DES(a) U{s2}| > m, that is, |(DES(s;) —
DES(a) ~ {s2}) U{s1}| < m} ]
begin {include DES(s;) — DES(a) — {s,} into V;}
Vi := DES(s2) — DES(a) — {s2};
Gpn =G—-Vi;
Ty =T -V,
(V{,V2) := PART2(G»,Tn, 51, %2,
[V(G2) |~ m,m);
return (V, UV, V)
end
(3) else {sz has exactly one child}
begin
let b be an arbitrary grandchild of s;;
3.1) if s; is adjacent to a vertex in DES(b) then {see
Fig. 3}
(3.1.1) if IDES(b) U {s1}]<m then
begin {include DES(b) into V;}
V1 := DES(b);
Gh11 = G—V1 +(s1,a); {since all vertices
in DES(b) are included into Vi, we may
assume that a, the parent of b, is adjacent
to s1}
Tan =T -V1;
(V{,V2) := PART2(G311,T311, 51, 52,
V(G| —m,m);
return (Vv UV, V2)
end
(3.1.2) else  {|DES(b) U{s1}| > m, that s,
[(DES(a) — DES(5)) U {s2}| < m}
begin {include DES(a) — DES(b) into V3 }
V3 := DES(a) — DES(b);
Gz == (G — W) /(s2,a);
T3z = (T — V2)/(s2,0);
(V1,V3) := PART2 (G512, Ta12, 81, 52,
m, [V(Ga2)| —m);
return (V;,V, UVy)
end
3.2) else {s; is adjacent to no vertex in DES(d), and
hence sz is adjacent to a vertex in DES(b). See
Fig. 4}
3.2.1) if [DES(b) U{s2}] < m then
begin {include DES(b) into V»}
V5 := DES(b);
Ga =G — Va3
Ts21:=T — Va3
(V1,V3) := PART2 (G, Tha1, 51, 82,
m, [V(Ga1)| —m);
return (V3,2 UV;)
end
(322) else  {|DES(b) U {s1}| > ma, that s,
[(DES (a) — DES(b)) U{s2})| < m}
begin {include DES(a) — DES(b) into Vi }
Vi := DES(a) — DES(});
Gin = (G — (Vi — {a}))/(s1,0);
T3 i=(T— (V1 — {a})/(s1 ,a); {although
(s1,a) is not an edge in T, /(sy,a) is to
identify two vertices s; and a. Select s
as the root of T3z}
(V2,V{) := PART2(G322, Ton2, 52, 81,
m, [V(Gan)| — m);
return (V; UV, 13)
end
end
end;

The following lemma can be easily proved from Lemma 1.

LEMMA 2. Modified graphs G731, G2z, Gai, Gz, G3p1 and
Gz in PART2 are biconnected, Ty, To, T311, T312 and T%y; are
depth first search trees with s; as the root in Ga, Ga. Gan,
Ga12 and G, respectively, and Ty, is a depth first search tree
with s as the root in Gy, . |

®)_ (

Fig. 4(a) G , (b) G2y and (¢) Gy
) One can easily prove the correctness of the algorithm by
using Lemma 2,

_ Clearly one can implement the algorithm above so that it runs
in O(m).
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