3L-4

Bipartition of Biconnected Graphs

Hitoshi Suzuki, Naomi Takahashi and Takao Nishizeki

Tohoku University

1. INTRODUCTION

We present a linear algorithm for solving bipartition problem for a biconnected graph. The bipartition problem is the following: Input: (1) an undirected graph G = (V, E) with n = |V|

vertices and m = |E| edges;

(2) $s_1, s_2 \in V$, $s_1 \neq s_2$; and

(3) two natural numbers $n_1, n_2 \in N$ such that $n_1 + n_2 = n$.

Output: a partition (V_1, V_2) of vertex set V such that

(a) $s_1 \in V_1$ and $s_2 \in V_2$;

(b) $|V_1| = n_1$ and $|V_2| = n_2$; and

(c) V_1 and V_2 induce connected subgraphs of G.

Fig. 1 depicts an instance of the problem above and a solution.

Clearly the problem has no solution for some graphs. Furthermore the problem determining whether the above problem has a solution is NP-complete if G may be not biconnected[DF]. However, Györi and Lovász independently proved the following theorem

Theorem 1 [Gy,Lo]. If G is k-connected, then the k-partition problem has a solution.

The k-partition problem is one to find k disjoint connected subgraphs in a graph each of which contains a specified vertex and has a specified number of vertices. Since the bipartition problem is a subproblem of k-partition problem, it necessarily has a solution if the given graph G is biconnected. Although the proof by Györi provides a polynomial algorithm if k=2, naive implementation of the algorithm does not run in linear time.

Our algorithm is not based on the proofs but based on characteristics of a depth first search tree in a biconnected graph.

Fig. 1 An instance of the bipartition problem and a solution(thick lines depict the subgraphs induced from V_1 and V_2).

2. PRELIMINARIES

Let G=(V,E) be an undirected connected graph with vertex set V and edge set E. The vertex set and edge set of a graph H are denoted by V(H) and E(H), respectively. For an edge (v,w) in a graph G, G/(v,w) is the graph obtained from G by contracting edge (v,w), that is, identifying two vertices v and u and removing the resulting self loop and multiple edges, if any. For two vertices v and w in G, G+(v,w) is the graph obtained by adding new edge (v,w) to G if G does not include edge (v,w), or G otherwise. For a set X of vertices in V(G), G-X is the graph obtained by removing all the vertices in X and all the edges incident with vertices in X from G.

Let T be a depth first search tree of G. For each vertex $v \in V$, the set of descendants of v including v itself is denoted by DES(v). In this paper, ancestors and descendants of $v \in V$ include v itself. Clearly the following lemma holds.

LEMMA 1. Let G be an undirected graph and T be a depth first search tree of G. Then G is biconnected if and only if the root of T has exactly one child and, for each vertex v other than the root and its child, an edge of G joins an ancestor of the grandparent of v and a descendant of v.

3. ALGORITHM

In this section, we present a linear algorithm PART2 for solving bipartition problem for a biconnected graph G. Since the subgraphs of G induced from V_1 and V_2 cannot include edge (s_1,s_2) even if there is, a solution of the bipartition problem for $G+(s_1,s_2)$ is always one for G. Therefore, in the algorithm below, we may assume that G has edge (s_1,s_2) . Let T be a depth first search tree with s_1 as the root and s_2 as the child of the root. Since an edge joins s_1 and s_2 , we can find a depth first search tree like above by first searching s_2 . The algorithm is the following.

```
function PART2(G, T, s_1, s_2, n_1, n_2); begin

(1) if n_1 = 1 then return(\{s_1\}, V(G) - \{s_1\})

elseif n_2 = 1 then return(V(G) - \{s_2\}, \{s_2\});
```

(2) let a be an arbitrary child of s₂; if s₂ has more than one child then {see Fig. 2. Note that Lemma 1 implies that, for every child v of s₂, s₁ is adjacent to a vertex in DES(v)}

```
\begin{array}{ll} \text{if } | \mathrm{DES}(a) \cup \{s_2\} | \leq n_2 \text{ then} \\ & \text{ begin } \{ \mathrm{include } \ \mathrm{DES}(a) \ \mathrm{into } \ V_2 \} \\ & V_2 \coloneqq \mathrm{DES}(a); \\ & G_{21} \coloneqq G - V_2; \\ & T_{21} \coloneqq T - V_2; \\ & (V_1, V_2') \coloneqq \mathrm{PART2}(G_{21}, T_{21}, s_1, s_2, \\ & return \ (V_1, V_2 \cup V_2') \\ & \text{end} \end{array}
```

```
(2.2)
         else \{|DES(a) \cup \{s_2\}| > n_2,
                                                  that is, |(DES(s_2) -
         DES(a) - \{s_2\} ) \cup \{s_1\} | < n_1\}
              begin {include DES(s_2) - DES(a) - \{s_2\} into V_1}
                   V_1 := DES(s_2) - DES(a) - \{s_2\};
                   G_{22} := G - V_1;
                  T_{22}:=T-V_1;
                   (V_1', V_2) := PART2(G_{22}, T_{22}, s_1, s_2)
                                                       |V(G_{22})|-n_2,n_2);
                   return (V_1 \cup V_1', V_2)
                                                                                                                               (a)
              end
(3) else \{s_2 \text{ has exactly one child}\}
         begin
              let b be an arbitrary grandchild of s2;
(3.1)
              if s_1 is adjacent to a vertex in DES(b) then {see
              Fig. 3}
                   if |DES(b) \cup \{s_1\}| \le n_1 then begin {include DES(b) into V_1}
(3.1.1)
                                                                                                           (b)
                                                                                                                                                      (c)
                             V_1 := DES(b);
                                                                                                             Fig. 2 (a) G , (b) G_{21} and (c) G_{22}
                             G_{311} := G - V_1 + (s_1, a); {since all vertices
                                                                                                                              s_1
                             in DES(b) are included into V_1, we may
                             assume that a, the parent of b, is adjacent
                            T_{311} := T - V_1;

(V'_1, V_2) := PART2(G_{311}, T_{311}, s_1, s_2,
                                                       |V(G_{311})|-n_2,n_2);
                             return (V_1 \cup V_1', V_2)
                        end
(3.1.2)
                   else
                              \{|DES(b) \cup \{s_1\}| > n_1,
                                                                             is.
                   |(DES(a) - DES(b)) \cup \{s_2\}| < n_2\}

begin {include DES(a) - DES(b) into V_2}
                                                                                                                                 (a)
                                                                                                                                               s_2=a
                             V_2 := DES(a) - DES(b);
                             G_{312} := (G - V_2)/(s_2, a);
                             T_{312} := (T - V_2)/(s_2, a);
                             (V_1, V_2') := PART2(G_{312}, T_{312}, s_1, s_2,
                                                       n_1, |V(G_{312})| - n_1);
                             return (V_1, V_2 \cup V_2')
                        end
                                                                                                             Fig. 3 (a) {\it G} , (b) {\it G}_{311} and (c) {\it G}_{312}
(3.2)
              else \{s_1 \text{ is adjacent to no vertex in DES}(b), \text{ and }
              hence s_2 is adjacent to a vertex in DES(b). See
              Fig. 4}
                   if |DES(b) \cup \{s_2\}| \le n_2 then begin {include DES(b) into V_2}
(3.2.1)
                             V_2 := DES(b);
                             G_{321} := G - V_2;
                             T_{321} := T - V_2;
                             (V_1, V_2') := PART2(G_{321}, T_{321}, s_1, s_2,
                                                       n_1, |V(G_{321})| - n_1);
                             return (V_1, V_2 \cup V_2')
                        end
                                                                                                                               (a)
(3.2.2)
                   else
                              {|DES(b) \cup {s_1}| > n_2,}
                                                                             is,
                   |(DES(a) - DES(b)) \cup \{s_2\})| < n_1\}
                        begin {include DES(a) - DES(b) into V_1}
                             V_1 := DES(a) - DES(b);
                            G_{322} := (G - (V_1 - \{a\}))/(s_1, a);

T_{322} := (T - (V_1 - \{a\}))/(s_1, a); {although
                             (s_1, a) is not an edge in T, /(s_1, a) is to
                                                                                                      (b)
                                                                                                                                                  (c)
                             identify two vertices s_1 and a. Select s_2
                                                                                                         Fig. 4 (a) G , (b) G_{321} and (c) G_{322}
                                                                                          One can easily prove the correctness of the algorithm by
                             as the root of T_{322}
                             (V_2, V_1') := PART2(G_{322}, T_{322}, s_2, s_1,
                                                                                    using Lemma 2.
                                                                                          Clearly one can implement the algorithm above so that it runs
                                                       n_2, |V(G_{322})| - n_1);
                             return (V_1 \cup V_1', V_2)
                                                                                    in O(m).
                         end
          end
end;
```

The following lemma can be easily proved from Lemma 1.

LEMMA 2. Modified graphs G_{21} , G_{22} , G_{311} , G_{312} , G_{321} and G_{322} in PART2 are biconnected, T_{21} , T_{22} , T_{311} , T_{312} and T_{321} are depth first search trees with s_1 as the root in G_{21} , G_{22} , G_{311} , G_{312} and G_{321} , respectively, and T_{322} is a depth first search tree with s_2 as the root in G_{322} .

References

- [DF] M. E. Dyer and A. M. Frieze, On the complexity of partitioning graph into connected subgraphs, Discrete Appl. Math., 10, 1985, pp.139-153.
- [Gy] E. Györi, On division of connected subgraphs, Combinatorics (Proc. Fifth Hungarian Combinatorial Coll., 1976, Keszthely), Bolyai-North-Holland, 1978, pp.485-494.
- [Lo] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hunger. 30, 1977, pp.241-251.