WEKO3
アイテム
Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
https://ipsj.ixsq.nii.ac.jp/records/101611
https://ipsj.ixsq.nii.ac.jp/records/101611f04de2dc-0af7-4902-b8b1-47e3e5454364
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2011 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Trans(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2011-02-22 | |||||||
タイトル | ||||||||
タイトル | Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Regular Paper - Research Paper | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Tokyo Institute of Technology | ||||||||
著者所属 | ||||||||
Tokyo Institute of Technology/PRESTO, JST | ||||||||
著者所属 | ||||||||
Gunma University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Tokyo Institute of Technology | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Tokyo Institute of Technology / PRESTO, JST | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Gunma University | ||||||||
著者名 |
Jaak, Simm
× Jaak, Simm
|
|||||||
著者名(英) |
Jaak, Simm
× Jaak, Simm
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Probabilistic classification and multi-task learning are two important branches of machine learning research. Probabilistic classification is useful when the ‘confidence’ of decision is necessary. On the other hand, the idea of multi-task learning is beneficial if multiple related learning tasks exist. So far, kernelized logistic regression has been a vital probabilistic classifier for the use in multi-task learning scenarios. However, its training tends to be computationally expensive, which prevented its use in large-scale problems. To overcome this limitation, we propose to employ a recently-proposed probabilistic classifier called the least-squares probabilistic classifier in multi-task learning scenarios. Through image classification experiments, we show that our method achieves comparable classification performance to the existing method, with much less training time. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Probabilistic classification and multi-task learning are two important branches of machine learning research. Probabilistic classification is useful when the ‘confidence’ of decision is necessary. On the other hand, the idea of multi-task learning is beneficial if multiple related learning tasks exist. So far, kernelized logistic regression has been a vital probabilistic classifier for the use in multi-task learning scenarios. However, its training tends to be computationally expensive, which prevented its use in large-scale problems. To overcome this limitation, we propose to employ a recently-proposed probabilistic classifier called the least-squares probabilistic classifier in multi-task learning scenarios. Through image classification experiments, we show that our method achieves comparable classification performance to the existing method, with much less training time. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA12394973 | |||||||
書誌情報 |
IPSJ Transactions on Computer Vision and Applications(CVA) 巻 3, p. 1-8, 発行日 2011-02-22 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-6695 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |