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Probabilistic classification and multi-task learning are two important
branches of machine learning research. Probabilistic classification is useful
when the ‘confidence’ of decision is necessary. On the other hand, the idea
of multi-task learning is beneficial if multiple related learning tasks exist. So
far, kernelized logistic regression has been a vital probabilistic classifier for the
use in multi-task learning scenarios. However, its training tends to be computa-
tionally expensive, which prevented its use in large-scale problems. To overcome
this limitation, we propose to employ a recently-proposed probabilistic classifier
called the least-squares probabilistic classifier in multi-task learning scenarios.
Through image classification experiments, we show that our method achieves
comparable classification performance to the existing method, with much less
training time.

1. Introduction

Probabilistic classification (PC) and multi-task learning (MTL) are two impor-
tant research topics in the area of machine learning.

In real-world classification scenarios, one often wants to know the ‘confidence’ of
classification results. This is because if the confidence is turned out to be low, one
may give up automatically classifying the pattern and instead manually classify
it. A standard PC approach tries to learn the class-posterior probability (i.e.,
the probability of a test pattern belonging to each class), which can be directly
translated into the confidence of classification. Logistic regression (LR) 1) would
be a representative PC method.

On the other hand, MTL deals with the case where multiple related learning
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tasks exist. The rationale behind MTL is that, rather than solving multiple
learning tasks separately, solving them simultaneously by sharing some common
information behind the tasks may improve the classification accuracy 2). A pop-
ular approach to MTL is to impose the solutions of related tasks to be similar
to each other. This allows related tasks to implicitly share training samples
effectively 3).

In this paper, we focus on the MTL problem in PC scenarios. So far, LR clas-
sifiers have been applied to MTL and shown to perform well in experiments 4).
However, when a kernelized version of LR (KLR) is used for non-linear clas-
sification, its training is computationally highly expensive for kernel functions
producing dense kernel matrices (e.g., the Gaussian kernel). Although sophis-
ticated non-linear optimization techniques such as Newton’s method and quasi-
Newton methods can be employed for training KLR classifiers 1),5), applying KLR
to large-scale data is still challenging. This computational inefficiency of KLR
becomes more critical in MTL scenarios since a large number of training data
gathered from many tasks need to be handled at the same time.

The goal of this paper is to propose a computationally-efficient alternative to
the KLR-based MTL method. More specifically, we propose to use an alternative
non-linear PC method called least-squares probabilistic classifiers (LSPCs) 6), in-
stead of the KLR classifiers, in the MTL scenarios. An advantage of LSPC is
that its solution can be computed analytically just by solving a regularized sys-
tem of linear equations. Thus, it is computationally very efficient and stable.
We combine the MTL idea proposed in the paper 3) with LSPCs, and develop a
computationally-efficient MTL method for PC.

However, naively combining the MTL idea with LSPC still requires a high
computational cost—indeed, the computational complexity grows cubically with
respect to the number of tasks. To ease this problem, we reformulate the opti-
mization problem in the dual domain, and show that the solution can be com-
puted exactly with the computational complexity independent of the number of
tasks. This is the same computational complexity as that of the single-task LSPC
method, and therefore the proposed MTL method is computationally highly ef-
ficient when a large number of tasks exist.

Through image classification experiments, we demonstrate that the proposed
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2 Multi-task Learning with Least-squares Probabilistic Classifiers

LSPC-based MTL method achieves comparable classification performance to the
existing KLR-based MTL method, with the computational cost smaller in two
orders of magnitude.

After reviewing LSPC for ordinary single-task classification scenarios in Sec-
tion 2, we extend it to multi-task classification scenarios in Section 3. Experimen-
tal results are reported in Section 4, and we conclude in Section 5 by summarizing
our contributions.

2. Single-task Classification

In this section, we review the original LSPC method for ordinary single-task
classification scenarios.

Let us consider a single-task binary classification problem. Suppose we are
given N training points

{(xn, yn)}N
n=1,

where xn ∈ R
d are the inputs and yn ∈ {−1,+1} are the class labels. The goal

is to estimate the class-posterior probability p(y|x).
LSPC �1, proposed in the paper 6), models the class-posterior probability p(y|x)

by using a linear model
α�

y φ(x),
where αy ∈ R

N is the N -dimensional parameter vector for class y, � denotes the
transpose, and φ(x) ∈ R

N is the N -dimensional feature vector. For example, in
the paper 6), the Gaussian kernel was used as the feature vector φ(x):

φ(x) = (k(x,x1), . . . , k(x,xN ))�,

where
k(x,x′) = exp(−‖x − x′‖2/σ2). (1)

For each class y ∈ {−1,+1}, LSPC finds the parameter αy that minimizes the
squared error between the true class probability p(y|x) and its model α�

y φ(x) by
solving the following optimization problem:

�1 Note that the LSPC method we are reviewing here is the ‘LSPC(full)’ method described in
the paper 6), where ‘full’ means that all kernels are used for learning. On the other hand,
a more practical version of LSPC where irrelevant kernels are removed was also proposed
in the original paper. Here we chose ‘LSPC(full)’ since this is more suitable in the MTL
formulation.

α̂y =argmin
αy

1
2N

N∑
n=1

α�
y φ(xn)φ(xn)�αy− 1

N

∑
n:yn=y

α�
y φ(xn)+

λ

2
‖αy‖2, (2)

where λ (≥ 0) is the regularizer parameter. Let

Φ = [φ(x1), . . . ,φ(xN )]�,

zy = [δy,y1 , . . . , δy,yN
]�,

where δy,y′ denotes Kronecker’s delta:

δy,y′ =

{
1 y = y′,
0 y �= y′.

Then the problem Eq. (2) can be compactly rewritten as �2

α̂y = argmin
αy

1
2N

α�
y Φ�Φαy − 1

N
α�

y Φ�zy +
λ

2
‖αy‖2. (3)

λ and σ will be chosen based on cross-validation.
The solution to Eq. (3) is given analytically by
α̂y = (Φ�Φ + λNIN )−1Φ�zy,

where IN denotes the N -dimensional identity matrix. Finally, the class-posterior
probability is estimated as follows 7).

p̂(y|x) =
max(0, α̂�

y φ(x))
max(0, α̂�

−1φ(x)) + max(0, α̂�
+1φ(x))

.

The computational complexity of LSPC is O(N3).
On the other hand, KLR involves non-linear optimization, and the solution is

usually computed using iterative algorithms. Its typical implementation based
on Newton’s method iteratively solves a weighted least-squares problem 1), which
requires O(N3) computational costs in each iteration. Thus, the computational
complexity of LSPC training corresponds to a single iteration of KLR training.

�2 Note that Φ is a symmetric matrix in the current setup, i.e., Φ� = Φ. However, when the
number of kernel functions is reduced, e.g., by random subset selection, Φ could be a rect-
angular matrix. For this reason, we decided to explicitly use its transpose Φ� throughout
the paper.
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3 Multi-task Learning with Least-squares Probabilistic Classifiers

3. Multi-task Classification

When multiple related learning tasks exist, solving them simultaneously by
sharing some common information behind the tasks could be more beneficial
than solving them separately. Here, we extend the LSPC method to the multi-
task scenarios. We first describe our basic idea in Section 3.1, and then we
introduce a trick to improve the computational efficiency in Section 3.2.

3.1 Basic Formulation
Suppose there are T binary classification tasks, and each task has a different

class-posterior probability p(y|x, t), where t ∈ {1, . . . , T} is the task index. The
training samples are now accompanied with the task index, i.e.,

{(xn, yn, tn)}N
n=1,

where tn ∈ {1, . . . , T}.
The key idea of multi-task learning is to impose solutions of different tasks to

be similar to each other 3), by which training samples can be implicitly shared
across different tasks. Here, we apply this idea to LSPC, which we refer to as
LSPC-MT. More specifically, let us model the class-posterior probability p(y|x, t)
by the following linear model:

(βy,0 + βy,t)�φ(x),
where βy,0 is the common part of the solutions for all tasks, and βy,t is the
individual part of the solution for task t. Then we can express the LSPC training
criterion Eq. (2) for the multi-task model as

β̂y = argmin
βy

1
2N

N∑
n=1

(βy,0 + βy,tn
)�φ(xn)φ(xn)�(βy,0 + βy,tn

)

− 1
N

∑
n:yn=y

(βy,0 + βy,tn
)�φ(xn) (4)

+
λ

2
‖βy,0‖2 +

γ

2T

T∑
t=1

‖βy,t‖2,

where λ (≥ 0) is the regularization parameter for the shared parameter βy,0. γ

(≥ 0) is the multi-task parameter which controls the strength of the multi-task
penalty, i.e., the solutions {βy,0 +βy,t}T

t=1 are imposed to be close to each other.

If λ is large enough, the shared component βy,0 vanishes, and thus we merely
have T single-task LSPC models (with a common ‘regularization’ parameter γ).
On the other hand, if γ is large enough, the individual components {βy,t}T

t=1

vanish, and thus we have a single LSPC model trained using samples from all
tasks. Otherwise, the solution for each task is generally forced to be close to each
other.

Naively obtaining the solutions of Eq. (4) requires to solve a system of N(T +1)
linear equations. This requires O(N3T 3) computational complexity, which may
be intractable when T is large.

3.2 Improving Computational Efficiency
To improve the computational complexity of LSPC-MT, we reformulate the

parameters of LSPC-MT as

ωy =

(√
Tλ

γ
β�

y,0,β
�
y,1, . . . ,β

�
y,T

)�

,

ψ(x, t) =

⎛⎜⎝√ γ

Tλ
φ(x)�,0�

N , . . . ,0�
N︸ ︷︷ ︸

t−1

,φ(x)�,0�
N , . . . ,0�

N︸ ︷︷ ︸
T−t

,

⎞⎟⎠
�

,

where 0N denotes the N -dimensional zero vector. This reformulation idea follows
a similar line to the paper 3), which focused on MTL for support vector machines.
By using the facts that

‖ωy‖2 =
Tλ

γ
‖βy,0‖2 +

T∑
t=1

‖βy,t‖2,

ω�
y ψ(x, t) = (βy,0 + βy,t)�φ(x),

we can express Eq. (4) as

ω̂y = argmin
ωy

1
2N

N∑
n=1

ω�
y ψ(xn, tn)ψ(xn, tn)�ωy

− 1
N

∑
n:yn=y

ω�
y ψ(xn, tn) +

γ

2T
‖ωy‖2.

Similarly to the original LSPC, by denoting
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Ψ = [ψ(x1, t1), . . . ,ψ(xN , tN )]�,

we have

ω̂y = argmin
ωy

1
2N

ω�
y Ψ�Ψωy − 1

N
ω�

y Ψ�zy +
γ

2T
‖ωy‖2

=
(
Ψ�Ψ +

γN

T
IN(T+1)

)−1

Ψ�zy. (5)

However, calculating Eq. (5) still requires O(N3T 3) time. In order to reduce
the computational cost, let us consider a dual expression of Eq. (5).

Lemma 1 Equation (5) can be equivalently expressed as

ω̂y = Ψ�
(
ΨΨ� +

γN

T
IN

)−1

zy.

Proof: According to (147) in the paper 8), the following matrix inversion formula
holds for some matrix B and invertible matrices R and P:

(B�R−1B + P−1)−1B�R−1 = PB�(BPB� + R)−1.

Let us put

B = Ψ, R = IN , and P =
T

γN
IN(T+1).

Then we have(
Ψ�Ψ +

γN

T
IN(T+1)

)−1

Ψ� = Ψ�
(
ΨΨ� +

γN

T
IN

)−1

,

which concludes the proof.
This dual representation allows us to write the (un-normalized) estimator of

p(y|x, t) as

ω̂�
y ψ(x, t) = z�y

(
ΨΨ� +

γN

T
IN

)−1

Ψψ(x, t)

= μ̂�
y ξ(x, t), (6)

where

ξ(x, t) = [ψ(x1, t1)�ψ(x, t), . . . ,ψ(xN , tN )�ψ(x, t)]�,

μ̂y =
(
ΨΨ� +

γN

T
IN

)−1

zy.

Then, since

ψ(x, t)�ψ(x′, t′) =
( γ

Tλ
+ δt,t′

)
φ(x)�φ(x′),

[ΨΨ�]n,n′ = ψ(xn, tn)�ψ(xn′ , tn′),

Eq. (6) can be computed with O(N3) computational costs.
Finally, the class-posterior probability is estimated as

p̂(y|x) =
max(0, μ̂�

y ξ(x, t))
max(0, μ̂�

−1ξ(x, t)) + max(0, μ̂�
+1ξ(x, t))

. (7)

The computational complexity required for this formulation of LSPC-MT is
O(N3), which is the same as the single-task LSPC. This implies that the com-
putational complexity of LSPC-MT is independent of the number of tasks, and
thus it is computationally highly efficient when T is large.

4. Experiments

In this section, we report the results of experimental performance evaluation
on two real-world image classification problems.

4.1 UMIST Face Recognition
In the first set of experiments, we used the UMIST face recognition dataset 9).
The UMIST dataset contains images of 20 different people, 575 images in total.

Images were appropriately cropped into 112 × 92 (= 10,304) pixels. Each pixel
takes 8-bit intensity values from 0 to 255.

The database contains 4 female subjects among the 20 subjects. In our experi-
ments, we chose a male subject from the 16 male subjects for each of the 4 female
subjects, and constructed 4 binary classification tasks between male (class +1)
and female (class −1). We expect that MTL captures some common structure
behind different male-female classifiers. Examples of face images are depicted in
Fig. 1.

As inputs, the raw pixel values of the gray-scale images were directly used, i.e.,
x ∈ R

10304. Training images were randomly chosen from the images of the target
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5 Multi-task Learning with Least-squares Probabilistic Classifiers

Fig. 1 Examples of face images taken from the UMIST face datasets. We constructed four
binary classification tasks between male (class +1) and female (class −1), each contains
face images from a single male subject (the upper row) and a single female subject (the
lower row).

male and female subjects, and the rest of the images were used as test samples.
In each task, the numbers of male and female samples were set to be equal both
for training and testing.

We compared the correct classification rate (i.e., classification accuracy) and
computation time of the proposed LSPC-MT method with those of the KLR
multi-task method (KLR-MT) 4) as a function of the number of training samples.
As baselines, we also included in our comparison the single-task counterparts:
LSPC-STI, KLR-STI, LSPC-STC, and KLR-STC. ‘STI’ denotes ‘single task,
independent’, meaning that each task is treated independently and a classifier
is trained for each task only using samples of that task (this corresponds to
setting λ in Eq. (4) large enough). On the other hand, ‘STC’ denotes ‘single task,
combined’, meaning that all tasks are combined together and a single common
classifier is trained using samples from all tasks (this corresponds to setting γ in
Eq. (4) large enough).

In all the six methods, LSPC-MT, KLR-MT, LSPC-STI, KLR-STI, LSPC-
STC, and KLR-STC, 5-fold cross-validation (CV) with respect to the classifica-
tion accuracy was used to choose the regularization parameter

λ ∈ {0.01, 0.03, 0.1, 0.3, 1.0, 3.0},
and the Gaussian kernel bandwidth

σ ∈ {1
2m, 2

3m, 5
6m,m, 4

3m, 5
3m},

where m is the median distance between all pairs of training samples. Addition-
ally, for LSPC-MT and KLR-MT, we selected the multi-task parameter

(a) Accuracy (b) Computation time

Fig. 2 Experimental results for the UMIST dataset. (a) Mean classification accuracy over
200 runs. ‘◦’ indicates the best performing method or a tie with the best performance
(by t-test with 1% level of significance). ‘×’ indicates that the method is significantly
weaker than the best one. (b) The computation time (in seconds).

γ ∈ {0, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0}
by CV.

We implemented all the methods using MATLABR©. KLR solutions were nu-
merically computed by the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method using the ‘minFunc’ package 10). We repeated the experiments
200 times with different random seeds, and evaluated the mean classification ac-
curacy and computation time.

The classification accuracy are summarized in Fig. 2 (a), showing that both
MTL methods significantly outperform the single-task learning counterparts. On
the other hand, the accuracy of LSPC-MT and KLR-MT is comparable to each
other. Figure 2 (b) summarizes the computation time, showing that LSPC and
LSPC-MT were 2–3 times faster than KLR and KLR-MT, respectively. The
minimum and maximum values for the classification accuracy and computation
time are reported in Tables 1 and 2, respectively.

4.2 Landmine Image Classification
In the second set of experiments, we used the landmine image classification

dataset 11).
The Landmine dataset consists of 29 binary classification tasks about various

landmine fields. Each input sample x is a 9-dimensional feature vector cor-
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Table 1 Experimental results for the UMIST dataset. Minimum and maximum classification
accuracy over 200 runs. The first column shows the number of samples per task.

LSPC-MT KLR-MT LSPC-STI KLR-STI LSPC-STC KLR-STC

3
0.763
1.000

0.812
1.000

0.830
1.000

0.867
1.000

0.754
1.000

0.796
1.000

4
0.915
1.000

0.921
1.000

0.896
1.000

0.901
1.000

0.837
1.000

0.908
1.000

5
0.893
1.000

0.925
1.000

0.903
1.000

0.915
1.000

0.909
1.000

0.930
1.000

6
0.918
1.000

0.907
1.000

0.909
1.000

0.911
1.000

0.912
1.000

0.912
1.000

7
0.899
1.000

0.915
1.000

0.897
1.000

0.905
1.000

0.897
1.000

0.903
1.000

8
0.967
1.000

0.962
1.000

0.938
1.000

0.942
1.000

0.979
1.000

0.979
1.000

Table 2 Experimental results for the UMIST dataset. Minimum and maximum computation
time (in seconds) over 200 runs. The first column shows the number of samples per
task.

LSPC-MT KLR-MT LSPC-STI KLR-STI LSPC-STC KLR-STC

3
2.52e+00
2.67e+00

8.04e+00
9.11e+00

3.22e-01
3.69e-01

8.88e-01
1.20e+00

2.97e-01
3.30e-01

1.26e+00
1.53e+00

4
3.09e+00
1.45e+01

1.26e+01
5.29e+01

4.11e-01
1.87e+00

1.68e+00
7.86e+00

3.88e-01
1.93e+00

1.86e+00
8.64e+00

5
3.09e+00
1.18e+01

1.25e+01
5.11e+01

4.09e-01
1.67e+00

1.63e+00
6.88e+00

3.88e-01
1.60e+00

1.91e+00
7.81e+00

6
7.53e+00
3.76e+01

2.65e+01
1.14e+02

1.02e+00
5.42e+00

3.61e+00
1.68e+01

1.01e+00
5.17e+00

3.87e+00
1.92e+01

7
7.58e+00
3.91e+01

2.69e+01
1.51e+02

1.02e+00
6.57e+00

3.58e+00
2.20e+01

9.90e-01
6.65e+00

3.86e+00
2.39e+01

8
8.47e+00
4.84e+01

3.41e+01
1.48e+02

1.17e+00
7.89e+00

4.63e+00
2.63e+01

1.13e+00
6.02e+00

4.82e+00
2.20e+01

responding to a region of landmine fields, and the binary class y corresponds
to whether there is a landmine or not in that region. The feature vectors are
extracted from radar images, concatenating four moment-based features, three
correlation-based features, one energy ratio feature, and one spatial variance
feature (see the paper 11) for details). The goal is to estimate whether a test
landmine field contains landmines or not based on the region features. In the 29
landmine classification tasks, the first 15 tasks are highly foliated and the last
14 tasks are regions that are bare earth or desert. Here we use the first 17 tasks

for our experiments: all 15 highly foliated regions and the first 2 tasks from bare
earth regions. In the latter 2 datasets, we completely reversed the class labels
and evaluated the robustness of MTL methods against noisy tasks.

We again compared the performance of LSPC-MT, KLR-MT, LSPC-STI, KLR-
STI, LSPC-STC, and KLR-STC. The experimental setup was the same as the
previous UMIST experiments, except that instead of the correct classification
rate, we adopted the Area Under the receiver operating characteristic Curve
(AUC) 12) as the performance measure. The reason for this choice is as follows.
In the landmine datasets, only about 6% of samples are from the landmine class
and the rest are from the non-landmine class. For such imbalanced classification
problems 13), merely using the classification accuracy is not appropriate since just
predicting all test samples to be non-landmine achieves 94% accuracy, which is
obviously non-sense. In imbalanced classification scenarios, it is important to
take into account the coverage of true landmine fields, in addition to the classifi-
cation accuracy. Since there is a trade-off between the coverage and classification
accuracy, we decided to adopt the AUC as our error metric here, which reflects
all possible trade-offs �1. In our experiments, we first calculated the AUC score
on the test samples for each task separately, and then took the mean of the AUC
values over all tasks.

To be consistent with the above performance measure, we performed CV also
with respect to the AUC score. Since the landmine datasets are highly imbal-
anced, the validation data in the CV procedure can contain no landmine sample,
which causes inappropriate choice of tuning parameters. To avoid this problem,
we combined all estimated class-posterior probabilities from different tasks and
calculated a single AUC score in the CV procedure, instead of merely taking the
mean of the AUC scores over all tasks.

The number of landmine samples contained in each task is 445–690. We ran-
domly selected a subset of the samples for training and used the rest for evaluat-
ing the AUC score. We repeated the experiments 10 times with different random
seeds, and evaluated the mean AUC score and computation time.

�1 Note that we did not round up classifiers’ negative outputs to zero (see Eq. (7)) since
negative values can also be utilized for computing the AUC scores.
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(a) AUC score (b) Computation time

Fig. 3 Experimental results for the Landmine dataset. (a) Mean AUC score over 10 runs.
‘◦’ indicates the best performing method or a tie with the best performance (by t-test
with 1% level of significance). ‘×’ indicates that the method is significantly weaker
than the best one. (b) The computation time (in seconds).

Figure 3 (a) summarizes the AUC scores, showing that the AUC scores of
LSPC-MT and KLR-MT are comparable to each other, and the MTL methods
are significantly better than the single-task counterparts. Figure 3 (b) summa-
rizes the computation time, showing that LSPC-MT is faster than KLR-MT in
two orders of magnitude. The minimum and maximum values for AUC and
computation time are shown in Tables 3 and 4.

5. Conclusions

We extended a recently-proposed probabilistic classification method called the
least-squares probabilistic classifier (LSPC) to multi-task setting. Although a
naive multi-task extension of LSPC given in Section 3.1 may still be computa-
tionally more advantageous than the multi-task method based on kernel logistic
regression (KLR) 4) with dense kernel matrices, it significantly increased the com-
putational complexity compared with the single-task LSPC method. In order to
improve the computational efficiency, we introduced a dual formulation for the
LSPC multi-task method in Section 3.2, allowing us to keep the computational
complexity the same as the single task case.

Through experiments, we confirmed that the proposed LSPC-based multi-task
method has comparable performance to the KLR-based multi-task method in

Table 3 Experimental results for the Landmine dataset. Minimum and maximum AUC
values over 10 runs. The first column shows the number of samples per task.

LSPC-MT KLR-MT LSPC-STI KLR-STI LSPC-STC KLR-STC

20
0.714
0.830

0.642
0.832

0.543
0.645

0.642
0.706

0.442
0.759

0.532
0.773

25
0.762
0.839

0.800
0.842

0.587
0.694

0.658
0.750

0.602
0.788

0.598
0.800

30
0.790
0.837

0.811
0.850

0.646
0.756

0.687
0.789

0.661
0.783

0.713
0.805

35
0.795
0.838

0.806
0.849

0.627
0.734

0.684
0.771

0.428
0.742

0.663
0.797

Table 4 Experimental results for the Landmine dataset. Minimum and maximum computa-
tion time (in seconds) over 10 runs. The first column shows the number of samples
per task.

LSPC-MT KLR-MT LSPC-STI KLR-STI LSPC-STC KLR-STC

20
1.20e+01
3.67e+01

2.84e+03
8.22e+03

1.86e+00
6.41e+00

3.72e+02
1.11e+03

1.59e+00
6.08e+00

7.99e+01
2.60e+02

25
1.78e+01
2.69e+01

3.90e+03
4.91e+03

3.15e+00
4.28e+00

5.28e+02
6.99e+02

2.49e+00
4.18e+00

9.36e+01
1.49e+02

30
2.36e+01
7.86e+01

4.77e+03
1.26e+04

3.50e+00
9.29e+00

6.57e+02
1.80e+03

3.29e+00
7.67e+00

1.37e+02
3.61e+02

35
3.72e+01
9.89e+01

5.96e+03
1.82e+04

5.03e+00
1.44e+01

8.48e+02
2.49e+03

4.45e+00
1.09e+01

1.76e+02
5.91e+02

terms of the classification accuracy, while the proposed method is computation-
ally much more efficient.
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