WEKO3
アイテム
Generalized N-Dimensional Principal Component Analysis (GND-PCA) Based Statistical Appearance Modeling of Facial Images with Multiple Modes
https://ipsj.ixsq.nii.ac.jp/records/101510
https://ipsj.ixsq.nii.ac.jp/records/10151074b6ab37-3265-4c60-99b2-3c3449c8a083
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2009 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Trans(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2009-09-24 | |||||||
タイトル | ||||||||
タイトル | Generalized N-Dimensional Principal Component Analysis (GND-PCA) Based Statistical Appearance Modeling of Facial Images with Multiple Modes | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Generalized N-Dimensional Principal Component Analysis (GND-PCA) Based Statistical Appearance Modeling of Facial Images with Multiple Modes | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Research Paper | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||
資源タイプ | journal article | |||||||
著者所属 | ||||||||
Graduate School of Science and Engineering, Ritsumeikan University | ||||||||
著者所属 | ||||||||
Graduate School of Science and Engineering, Ritsumeikan University | ||||||||
著者所属 | ||||||||
Graduate School of Science and Engineering, Ritsumeikan University | ||||||||
著者所属 | ||||||||
Beauty Cosmetic Research Lab, Kao Corporation | ||||||||
著者所属 | ||||||||
Beauty Cosmetic Research Lab, Kao Corporation | ||||||||
著者所属 | ||||||||
Beauty Cosmetic Research Lab, Kao Corporation | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Science and Engineering, Ritsumeikan University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Science and Engineering, Ritsumeikan University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Graduate School of Science and Engineering, Ritsumeikan University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Beauty Cosmetic Research Lab, Kao Corporation | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Beauty Cosmetic Research Lab, Kao Corporation | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Beauty Cosmetic Research Lab, Kao Corporation | ||||||||
著者名 |
Xu, Qiao
× Xu, Qiao
|
|||||||
著者名(英) |
Xu, Qiao
× Xu, Qiao
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | This paper introduces a framework called generalized N-dimensional principal component analysis (GND-PCA) for statistical appearance modeling of facial images with multiple modes including different people, different viewpoint and different illumination. The facial images with multiple modes can be considered as high-dimensional data. GND-PCA can represent the highorder dimensional data more efficiently. We conduct extensive experiments on MaVIC Database (KAO-Ritsumeikan Multi-angle View, Illumination and Cosmetic Facial Database) to evaluate the effectiveness of the proposed algorithm and compared the conventional ND-PCA in terms of reconstruction error. The results indicated that the extraction of data features is computationally more efficient using GND-PCA than PCA and ND-PCA. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | This paper introduces a framework called generalized N-dimensional principal component analysis (GND-PCA) for statistical appearance modeling of facial images with multiple modes including different people, different viewpoint and different illumination. The facial images with multiple modes can be considered as high-dimensional data. GND-PCA can represent the highorder dimensional data more efficiently. We conduct extensive experiments on MaVIC Database (KAO-Ritsumeikan Multi-angle View, Illumination and Cosmetic Facial Database) to evaluate the effectiveness of the proposed algorithm and compared the conventional ND-PCA in terms of reconstruction error. The results indicated that the extraction of data features is computationally more efficient using GND-PCA than PCA and ND-PCA. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA12394973 | |||||||
書誌情報 |
IPSJ Transactions on Computer Vision and Applications(CVA) 巻 1, p. 231-241, 発行日 2009-09-24 |
|||||||
ISSN | ||||||||
収録物識別子タイプ | ISSN | |||||||
収録物識別子 | 1882-6695 | |||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |