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This paper introduces a framework called generalized N-dimensional prin-
cipal component analysis (GND-PCA) for statistical appearance modeling of
facial images with multiple modes including different people, different view-
point and different illumination. The facial images with multiple modes can
be considered as high-dimensional data. GND-PCA can represent the high-
order dimensional data more efficiently. We conduct extensive experiments on
MaVIC Database (KAO-Ritsumeikan Multi-angle View, Illumination and Cos-
metic Facial Database) to evaluate the effectiveness of the proposed algorithm
and compared the conventional ND-PCA in terms of reconstruction error. The
results indicated that the extraction of data features is computationally more
efficient using GND-PCA than PCA and ND-PCA.

1. Introduction

To interpret images of faces, it is important to have a model of how the face can
appear. Faces vary widely, but differences can be represented by texture (patterns
of pixel values) across the face. The texture can vary because of differences
between individuals and due to changes in expression, viewpoint, cosmetics and
illumination.

Principal component analysis (PCA) method 1) is an efficient method to build
statistical appearance models of human faces. In the PCA-based face represen-
tation and recognition methods, the 2D face image matrices must be previously
transformed into 1D image vectors column by column 2). Such unfolding process
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causes two problems: one is the huge calculation cost and another is the poor
performance to generalize.

To overcome these problems, a new technique called 2-dimensional principal
component analysis (2D-PCA) 3) has been proposed, which directly computes
eigenvectors of the covariance matrix of the image without matrix-to-vector con-
version. It was reported that the recognition accuracy with 2D-PCA on several
face databases was higher than that with conventional 1D-PCA. However, the
main disadvantage of 2D-PCA is that it needs many more coefficients for image
representation. A method called generalized 2-dimensional principal component
analysis (G2D-PCA) 4) has been proposed to find optimal basis for both row- and
column-mode subspaces.

Recently, a method called N-dimensional PCA (ND-PCA) was proposed for
high-dimensional data analysis 5). In this method the high dimensional data
is treated as a higher-order tensor which is directly trained to obtain the
bases on one mode-subspace by the higher-order singular value decomposition
(HOSVD) 6),7). It was applied to 3D facial scanning data. The facial images with
multiple modes can be considered as high-dimensional data (or a tensor). With
the help of HOSVD or multilinear algebra, Vasilescu and Terzopoulos proposed
tensorface method 10) to build a statistical model of facial images in different
conditions, such as illumination, viewpoint and expression. Since ND-PCA only
compresses the data on one mode-subspace, it also suffered from the problem
that the data can’t be represented efficiently, similar to the problem of 2D-PCA.

Inspired from the works of G2D-PCA and ND-PCA, we proposed a new method
called generalized N-dimensional principal component analysis (GND-PCA) 11).
The high-dimensional data is treated as a series of higher-order tensors and the
bases on each mode-subspace are calculated in order to approximate the tensors
accurately. ND-PCA is a unilateral-projection-based scheme. Compared with
ND-PCA, GND-PCA is a N-lateral-projection-based scheme. Experiments show
that GND-PCA can represent the data more efficiently as compared to ND-
PCA method and has good performance. Another benefit of GND -PCA is that
the features obtained by GND-PCA is more meaningful than ones obtained by
ND-PCA to represent the different factors such as viewpoint, expression and
illumination, etc.
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232 GND-PCA Based Statistical Appearance Modeling

In this paper, we first introduce the basic knowledge of multilinear algebra and
HOSVD method. Then we introduce GND-PCA method in Section 3. Exper-
iments and the results are shown in Section 4. Comparison with other relative
methods is presented in Section 5. Finally, the conclusion is presented in the last
section.

2. Multilinear Algebra and HOSVD

We introduce some background knowledge and some related works in this sec-
tion.
( 1 ) Definition of Tensor
A tensor can be consider as a higher order extension of a vector (first order
tensor) and a matrix (second order tensor).

An N -th order tensor A is defined as a multi-array with N indices, where
A ∈ R

I1×I2×...×IN and R is the real manifold. Elements of the tensor A are
denoted as ai1...in...iN

, where 1 � in � In. The space of the N -th order tensor is
comprised by the N mode subspaces. From the perspective of A, scalars, vectors
and matrices can be seen as zeroth-order, first order and second order tensors
respectively.

Varying the n − th index in and keeping the other indices fixed, we can ob-
tain the “mode-n vectors” of the tensor A. The “mode-n matrix” A(n) can
be formed by arranging all the mode-n vectors sequentially as its columns,
A(n) ∈ R

In×(I1·...In−1·In+1·...IN ). The procedure of forming the mode-n matrix
is called unfolding of a tensor.

Figure 1 gives the examples to show how to unfold the third order to their
mode-n matrices. The mode-n product of a tensor A ∈ R

I1×I2×...×IN and a
matrix U ∈ R

Jn×In , denoted as A×nU, is an (I1×I2×. . .×In−1×Jn×In+1×. . .×
IN ) tensor. Entries of the new tensor is defined by (A×nU)i1i2...in−1jnin+1...iN

def=∑
in

ai1i2...in−1inin+1...iN
ujnin

. These entries can also be calculated by matrix
product, B(n) = U · A(n), B(n) is mode-n matrix of the tensor B = A×n U.

The mode-n product has two properties. One can be expressed by (A ×n

U)×m V = (A×m V)×n U = A×n U×m V; and the other is (A×n U)×n V =
A×n (V · U). The inner product of two tensors A,B ∈ R

I1×I2×...×IN is defined

Fig. 1 Example of Unfolding the Third Order Tensor to the Three Mode-n Matrices.

by 〈A,B〉 def=
∑

i1

∑
i2

. . .
∑

iN
ai1i2...iN

bi1i2...iN
.

The Frobenius-norm of a tensor A is defined by ||A|| def=
√〈A,A〉. The

Frobenius-norm of a tensor can also be calculated from its mode-n matrix,
||A|| = ||A(n)|| =

√
tr(A(n) · AT

(n)), tr(.) is the trace of a matrix.

A Nth-order tensor A ∈ R
I1×I2×...×IN can be decomposed by the tucker model,

which can be expressed by Eq. (1).

A = B ×1 U(1) ×2 U(2) × . . . × U(N) (1)

where U(n) ∈ R
In×Jn and B ∈ R

J1×J2×...×JN is the core tensor.
Much more details are referred to 8), 9).

( 2 ) HOSVD and ND-PCA Method
When the orthogonal constraint for the matrices U(n) is required, there are two
kinds of methods for the tucker decomposition. One method is called higher-
order SVD (HOSVD) 6) in which the column vectors of U(n) are obtained by the
singular value decomposition (SVD) for the mode-n matrices A(n) and Jn = In.
The other method is called lower rank-(J1, J2, . . . , JN ) tensor approximation 7) in
which the matrices U(n) is determined by finding a lower rank-(J1, J2, . . . , JN )
tensor (Jn < In) to most accurately approximate the original tensor.
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233 GND-PCA Based Statistical Appearance Modeling

In linear algebra, Singular Value Decomposition (SVD) is an important fac-
torization of a rectangular real or complex matrix, with several applications in
signal processing and statistics. SVD computes the low-rank approximation of a
set of 1D vectors. This can be generalized to a two dimensional Singular Value
Decomposition (2DSVD) to do low-rank approximation of a set of matrices such
as a set of images. Higher Order Singular Value Decomposition (HOSVD) is a
generalization of SVD for high dimensional tensor 6). In the case of a 3D tensor
executing HOSVD in 2 dimensions gives the same result as 2DSVD.

ND-PCA 5) is proposed for the modeling of higher-dimensional data. This
method is based on HOSVD and the data is treated as the high-order ten-
sor. Given a series of higher-order tensors with zero-mean value, Ai ∈
R

I1×I2×...×IN , i = 1, 2, . . . ,M and
∑M

i=1 Ai = 0, a (N + 1) − th order ten-
sor is firstly formed from the data and then HOSVD is applied on its mode-
n subspace. The first leading J , where J < In, eigenvectors U(n) =
[u(n)

1 ,u(n)
2 , . . . ,u(n)

J ] ∈ R
In×J is the bases on the mode-n subspace. A tensor

Ai ∈ R
I1×I2×...×IN can be compactly represented by the tensor Bi = Ai×nU(n)T

,
Bi ∈ R

I1×I2×...×In−1×J×In+1×...×IN whose components are the projections (coeffi-
cients) onto the mode-n subspaces for ND-PCA. Since HOSVD can be calculated
efficiently, ND-PCA does not suffers from the computing cost problem; however,
ND-PCA only compress the data on the mode-n subspaces, so ND-PCA needs
lots of components to represent the data, which is similar to the problem of
2DPCA.

3. GND-PCA Algorithm

( 1 ) Theory Foundation
We formalize GND-PCA 11) as follows:
Given a series of the N − th order tensors with zero-mean �1 Ai ∈
R

I1×I2×···×IN , i = 1, 2, . . . ,M ,
∑M

i=1 Ai = 0, we hope to find another series of
lower rank-(J1, J2, . . . , JN ) tensors Âi which can most accurately approximate
the original tensors, where Jn < In. The new series of tensors can be decom-

�1 if the tensors do not have zero-mean, we can subtract the mean-value from each tensor to
obtain a new series of tensors A′

i which have zero-mean, i.e. A′
i = Ai − 1

M

∑M
i=1 Ai

posed by the same N matrices U(n) ∈ R
In×Jn with orthogonal columns according

to tucker model which can be shown by Eq. (2).

Âi = Bi ×1 U(1) ×2 U(2) × . . . ×n U(n) × . . . ×N U(N) (2)

where Bi ∈ R
J1×J2×...×Jn×...×JN are the core tensors.

The orthogonal matrices U(n) can be determined by minimizing the cost func-
tion shown by Eq. (3). The cost function is defined as a mean square error
between the original tensor and the reconstructed tensor.

S =
M∑
i=1

||Ai − Âi||2 =
M∑
i=1

||Ai − Bi ×1 U(1) ×2 U(2) × . . . ×N U(N)||2 (3)

In Eq. (3), only the tensors Ai are known. However, supposing the N matrices
U(n) are known, the answer of Bi to minimize Eq. (3) is merely the result of the
traditional linear least-square problem. Theorem 3.1 can be obtained.

Theorem 3.1. Given fixed N matrices U(n), the tensors Bi that minimize the
cost function, Eq. (3 ), are given by Bi = Ai ×1 U(1)T ×2 U(2)T × . . . ×N U(N)T

The proof of Theorem 3.1 is simple, so it is omitted. With the help of Theo-
rem 3.1, Theorem 3.2 can be obtained.

Theorem 3.2. If the tensors Bi are chosen as Bi = Ai ×1 U(1)T ×2 U(2)T ×
. . .×N U(N)T

, minimization of the cost function Eq. (3 ) is equal to maximization
of the following cost function S′, where

S′ =
M∑
i=1

||Ai ×1 U(1)T ×2 U(2)T × . . . ×N U(N)T ||2.

There is no close-form solution to simultaneously resolve the matrices U(n) for
the cost function S′; however the explicit solution for one matrix can be obtained
if the other matrices are fixed. This is expressed by Lemma 3.3.

Lemma 3.3. Given the fixed matrices, U(1),U(2), . . . ,U(n−1),U(n+1),U(N), if
the columns of the matrix U(n) are selected as the first Jn leading eigenvectors
of the matrix

∑M
i=1 (Ci(n) · CT

i(n)), Ci(n) is the mode-n matrix of the tensor Ci =
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Fig. 2 Illustration of Reconstructing a Third Order Tensor by the Three Orthogonal Bases

of Mode Subspaces U
(1)
opt, U

(2)
opt, U

(3)
opt and the Projections Bi.

Ai ×1 U(1)T ×2 U(2)T × . . .×n−1 U(n−1)T ×n+1 U(n+1)T × . . .×N U(N)T
, the cost

function S′ can be maximized.

The proofs of Theorem 3.2 and Lemma 3.3 are shown in Appendix A.1 and A.2
respectively.

( 2 ) Iteration Algorithm
According to Lemma 3.3 we can use an iteration algorithm to get the N optimal
matrices, U(1)

opt,U
(2)
opt, . . . ,U

(N)
opt , which are able to maximize the cost function S′.

This algorithm is summarized as Algorithm 1.
Using the calculated matrices U(n)

opt, n = 1, 2, . . . , N , each of the volume Ai can
be approximated by Âi with least errors, where Âi = Bi×1U(1)

opt×2U(2)
opt× . . .×N

U(N)
opt and Bi = Ai ×1 U(1)

opt

T ×2 U(2)
opt

T × . . . ×N U(N)
opt

T
. The approximation can

be illustrated by Fig. 2 for the 3-dimensional case. In GND-PCA, the matrices
U(n)

opt, n = 1, 2, . . . , N construct the bases on the N mode-subspaces; and the core
tensor Bi are the projections on these mode-subspaces.

4. Experiments and Results

( 1 ) MaVIC Database
The database we used is MaVIC (KAO-Ritsumeikan Multi-angle View, Illumi-
nation and Cosmetic Facial Database) 12). The facial images in the database

Algorithm 1 Iteration Algorithm to Compute the N Matrices U(1)
opt,U

(2)
opt, . . . ,

U(N)
opt

IN: a series of N − th order tensors, Ai ∈ R
I1× I2×...×IN , i = 1, 2, . . . , M .

OUT: N Matrices U
(n)
opt ∈ R

In×Jn (Jn < In, n = 1, 2, . . . , N) with orthogonal column
vectors.

( a ) Initial values: k = 0 and U
(n)
0 whose columns are determined as the first Jn

leading eigenvectors of the matrices
∑M

i=1 (Ai(n) · AT
i(n)).

( b ) Iterate for k until convergence

• Maximize S′ =
∑M

i=1 ‖ Ci ×1 U(1)T ‖2, Ci = Ai ×2 U
(2)
k

T × . . . ×N U
(N)
k

T

Solution: U(1) whose columns are determined as the first J1 leading eigen-
vectors of

∑M
i=1 (Ci(1) · CT

i(1))

Set U
(1)
k+1 = U(1).

• Maximize S′ =
∑M

i=1 ‖ Ci ×2 U(2)T ‖2, Ci = Ai×1U
(1)
k+1

T ×3U
(3)
k

T ×. . .×N

U
(N)
k

T

Solution: U(2) whose columns are determined as the first J2 leading eigen-
vectors of

∑M
i=1 (Ci(2) · CT

i(2))

Set U
(2)
k+1 = U(2).

. . .
• Maximize S′ =

∑M
i=1 ‖ Ci ×n U(n)T ‖2, Ci = Ai ×1 U

(1)
k+1

T × . . . ×n−1

U
(n−1)
k+1

T ×n+1 U
(n+1)
k

T × . . . ×N U
(N)
k

T

Solution: U(n) whose columns are determined as the first Jn leading eigen-
vectors of

∑M
i=1 (Ci(n) · CT

i(n))

Set U
(n)
k+1 = U(n).

. . .
• Maximize S′ =

∑M
i=1 ‖ Ci ×N U(N)T ‖2, Ci = Ai ×1 U

(1)
k+1

T × . . . ×N−1

U
(N−1)
k+1

T

Solution: U(N) whose columns are determined as the first JN leading
eigenvectors of

∑M
i=1 (Ci(N) · CT

i(N))

Set U
(N)
k+1 = U(N).

k = k + 1
( c ) Set U

(1)
opt = U

(1)
k , U

(2)
opt = U

(2)
k , . . . , U

(N)
opt = U

(N)
k .

are captured from various angles of view and various illuminations with a “multi-
angle image capturing system (MICS)” 21). In MaVIC, there are 170 Japanese
women’s natural facial images and 250 Japanese women’s cosmetic facial images.
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235 GND-PCA Based Statistical Appearance Modeling

Fig. 3 Example images of MaVIC Database. (a) One sample with different poses (different
columns) and different illuminations (different rows). (b) Different samples.

Each subject was photographed in 13 different view-points under 14 illuminations.
Some sample images from MaVIC Database are shown in Fig. 3.

( 2 ) Statistical Appearance Models by GND-PCA
The proposed GND-PCA is used to construct statistical appearance models
for the 3D-Tensor data. In our experiment, we used a portion of the MaVIC
database. 80 samples (subjects) with natural facial images are used and each
sample has 13 viewpoints (poses) and 13 illuminations. The size of each image
is 60 × 50 pixels. The 2D image is unfolded into a vector with the dimension of
3000. All images of each sample are written together as a 3D-Tensor. Then we
put the vectors in different directions according to the following rules: mode-1 for
different viewpoints, mode-2 for image textures (pixels) and mode-3 for different
illuminations. Each sample is corresponding to a 3D tensor with the dimension
of 3000 × 13 × 13. We use 79 samples for training and another 1 sample for
Statistical Appearance Model Testing.

Fig. 4 Convergence of GND-PCA (when 100 × 5 × 5 mode subspace bases are trained).

As shown in Fig. 4, it can be seen that the cost function is not dramatically
changed after two times of iterations. So that we usually set the iteration times
of GND-PCA to two in the experiments.

We choose one sample as the template and use the others for training. The
leave-one-out experiment is used to test the generalization ability of the con-
structed models. The accuracy of the reconstructed tensor from the reduced
mode-subspace is measured by a normalized correlation. Normalized correla-
tion of two tensor-formed data, the original tOri(x, y, z) and the reconstructed
tRec(x, y, z), is defined as

NC =

∑
x,y,z tOri(x, y, z) · tRec(x, y, z)√∑

x,y,z t2
Ori(x, y, z) ·

√∑
x,y,z t2

Rec(x, y, z)
.

The value of NC is between 0 and 1. The more similar the two data, the larger the
value of normalized correlation. Figure 6 shows Normalized correlation between
the original ensemble and the reconstructed ensembles when different number of
mode-subspace bases are used. Figure 5 shows the reconstructed results from
different mode-subspace bases respectively. It can be seen that normalized cor-
relation becomes larger and larger when the number of bases is increased. When
3000× 13× 13 mode-subspace bases are used, normalized correlation becomes 1,
which means an untrained data can be fully reconstructed without reconstructed
errors if all the mode-subspace bases are used.
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236 GND-PCA Based Statistical Appearance Modeling

Fig. 5 Some images of reconstructed results by GND-PCA. (a) Some original images from
MaVIC. First image is under illumination 0o and viewpoint 0o, noted as (I0o,V 0o).
The following five image are under (I30o, V 0o), (I0o, V 30o), (I30o, V 30o), (I90o,
V 90o), (I180o, V 90o) respectively. (b) Images reconstructed by GND-PCA (Mode-
subspace bases: 3000×13×13). Compressing Rate (CR) is 1 and normalized correlation
(NC) is 1. (c) Images reconstructed by GND-PCA (Mode-subspace bases: 1200×5×5).
CR is 5.92% and NC is 0.987. (d) Images reconstructed by GND-PCA (Mode-subspace
bases: 600× 5× 10). CR is 5.92% and NC is 0.992. (e) Images reconstructed by GND-
PCA (Mode-subspace bases: 600 × 5 × 10). CR is 5.92% and NC is 0.989. (f) Images
reconstructed by GND-PCA (Mode-subspace bases: 100× 5× 5). CR is 0.5% and NC
is 0.977. (g) Mean images of training set.

Figure 7 shows a series of normalized correlations while increasing the training
samples and we can find that the constructed models have good performance for
generalization even though the training samples are quite few by using the GND-
PCA method. In the following experiments, we use 19 samples for training and
another 5 samples for testing in order to comparing GND-PCA with PCA and
ND-PCA.

Fig. 6 Normalized correlation between the original ensemble and the reconstructed
ensembles when different number of mode-subspace bases are used.

Fig. 7 Comparison of Normalized correlations between GND PCA (Mode-subspace bases:
1200 × 5 × 5) and PCA method (Eigenface method, all the available bases are used in
the reconstruction) when the number of training samples is increasing.
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237 GND-PCA Based Statistical Appearance Modeling

( 3 ) Comparison with PCA-Based Method
The PCA-based methods are also tried to build the statistical appearance models
for facial ensembles; however, two kinds of PCA-based methods suffers from
problems. For the first way to implement PCA, the computing cost is huge. The
vectors unfolded from the 3000×13×13 data have the high dimension of 507000,
so that the covariance matrix in the unfolded vector space has an extremely huge
dimension of 507000 × 507000. Assuming float data type is used to store the
covariance matrix in the computer, we need to allocate the memory of more than
1 MGB. This is impossible for the current desktop personal computer.

The second way to implement PCA (which is called eigenface Method) suffers
from the problem of bad performance on generalization. The leave-one-out ex-
periments are done and Fig. 9 compares the normalized correlation between the
original sample facial ensembles and the reconstructed sample facial ensembles
by the eigenface method and GND-PCA method. All the 19 available bases are
used in the reconstructions in the eigenface method while the mode-subspace
bases trained by GND-PCA is 1200 × 5 × 5. Figure 8 shows the examples for
the reconstructed results in the leave-one-out testing for the eigenface method.
It can be seen that the quality of the reconstructed results are not satisfied. The
reconstructed facial images are blurred and do not represent the characters of the
original images. The problem for this is because the available bases by eigenface
method are too few to represent an untrained vector in the unfolded vector space
with large dimension.

( 4 ) Comparison with ND-PCA
Since ND-PCA can only compress the data in one mode-subspace, it repre-
sents data not as efficient as GND-PCA method under the same compres-
sion rate. This can be demonstrated by the following experiments. With the
quite similar compression rate, where 1200·5·5

3000·13·13 ≈ 5.92% for GND-PCA and
230·13·13
3000·13·13 ≈ 3000·1·13

3000·13·13 ≈ 3000·13·1
3000·13·13 ≈ 7.20% for mode-1, mode-2, mode-3 of ND-

PCA respectively, we use leave-one-out experiment to compare the quality of
reconstruction of GND-PCA with the ND-PCA method by normalized correla-
tion. It can be seen in Fig. 9 that the normalized correlation for ND-PCA is
lower than GND-PCA. This illustrates that the qualities of the reconstructed

Fig. 8 (a) Some original images from MaVIC. (b) Images reconstructed by GND-PCA (Mode-
subspace bases: 1200 × 5 × 5). (c) Images reconstructed by ND-PCA (Mode-1 (View-
points) subspace bases: 3000×1×13). (d) Images reconstructed by ND-PCA (Mode-2
(Pixels) subspace bases: 230× 13× 13). (e) Images reconstructed by ND-PCA (Mode-
3 (Illuminations) subspace bases: 3000 × 13 × 1). (f) Images reconstructed by PCA
(Eigenface method), all the 19 available bases are used in the reconstruction.

ensembles by ND-PCA are worse than GND-PCA when the compressing rate of
two methods are nearly the same. Figure 8 also gives an example for the re-
constructed ensembles by the ND-PCA method in the leave-one-out testing. It
can be seen that the results of ND-PCA is better than the results of the eigen-
face method. But they are more blurred compared to the results of GND-PCA
method.

As mentioned above, ND-PCA is a unilateral-projection-based scheme, where
only one mode multiplication is taken. So that the feature tensor (core tensor)
which is got by ND-PCA contains the correlation information among the vec-
tors of mode-matrice after corresponding-mode unfolding. Compared with the
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238 GND-PCA Based Statistical Appearance Modeling

Fig. 9 Comparison of the results in the leave-one-out testing among PCA, ND-PCA and
GND-PCA.

Fig. 10 Comparison of Normalized Correlation among different mode-subspace when
different number of mode-subspace bases are used.

ND-PCA, GND-PCA can effectively remove the redundancies among the vectors
of each mode-matrices by detecting the features on all mode subspace simul-
taneously and thus lower down the number of coefficients used to represent a
tensor.

Another problem is that it is difficult to find the best approximation of a series
of tensors rather than one tensor. We need to give a fixed number to the rank
of each mode to do the feature detection. Figure 10 gives the comparison of

normalized correlations with the same compressing ratios in each mode-subspace
and shows that the reconstruction results is much more sensitive on mode-1
(viewpoints) than on mode-3 (illuminations) while increasing the compressing
rank number of mode-subspace. It is more stable on mode-2 (pixels) than on
mode-1 (viewpoints) and on mode-3 (illuminations). It should be noted that
on mode-2 (pixels) the variants among the samples can be represented as much
as possible by using very small number basis. So we can choose the smaller
rank number on mode-2 (pixels) and choose the larger rank number on mode-1
(viewpoints) and on mode-3 (illuminations) by GND-PCA method to keep the
higher construction information in the core tensors under the same compression
rates. Some researchers have focused on the optimal tensor approximation of
dimensionality reduction (such as 13), 14)) and it is still an open problem to deal
with.

5. Related Work

Since a tensor can be used to create efficient and intuitive representations for
a high-dimension data, it is a hot topic for researchers to introduce the tensor-
based method into image analysis area to deal with the image ensembles with
multiple factors. The image data tensor is decomposed in order to separate
and represent the constituent factors. There are mainly two types of tensor
decomposition method: CANDECOMP-PARAFAC (CP) Decomposition 9) and
TUCKER Decomposition 8). The two methods can be extend to arbitrary ordered
tensors. The first method is used for the sparse linear image coding, such as
tensor-rank principle 15) and NTF (non-negative tensor factorization) 16),17). But
it is too complicated to compute and understanding. Our method is based on
the TUCKER Decomposition which is based on tensor flattening.

The rank-R tensor approximation algorithm 19) based on slice projection of
third-order tensors were proposed for represent the multidimensional data. Sim-
ilar to GND-PCA algorithm in this paper, this algorithm also needs iterations
for convergence. A subtle but important difference between rank-R tensor ap-
proximation algorithm and GND-PCA algorithm is that the former mainly aims
to organize all the samples together into a larger tensor for dimensionality re-
duction, which is extremely important for image compression in computer vision,
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whereas, the GND-PCA algorithm aims to compress a series of image ensembles
by dealing with each sample as a separate tensor and making use of correlation
information between them. As same as GND-PCA is an extension of G2D-PCA
method, Rank-R tensor approximation algorithm reduces to the GLRAM (gen-
eralized low rank approximation of matrices) 18) when the tensor is second order.

The work that is most closely related to the current one is the MPCA (mul-
tilinear principal component analysis) recently proposed 20). Like GND-PCA,
MPCA works with tensor objects and determines a multilinear projection onto
a tensor subspace of lower dimensionality that captures most of the signal varia-
tion present in the original tensorial representation. The key different is that the
iteration algorithm which is used for calculating the optimal dimension-reduced
matrices on each mode-subspace is formulate in GND-PCA definitely.

6. Conclusion

In this paper we proposed GND-PCA for statistical appearance modeling of
facial images with multiple modes including different people, different pose and
different illumination. Compared with ND-PCA method, it can represent the
data more efficiently and the constructed models have good performance on gen-
eralization. In the future, we will apply the proposed method to statistical analy-
sis of cosmetic facial images in order to design and control various types of facial
appearance using cosmetic foundations 21). The proposed method can also be
used for generating various types of facial images in computer graphics.
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Appendix

A.1 The Proof of Theorem 3.2
Proof. The cost function can be expanded, shown as S =

∑M
i=1 ‖ Ai − Âi ‖2 =∑M

i=1(‖ Ai ‖2 −2〈Ai, Âi〉+ ‖ Âi ‖2). According to the definition of inner prod-
uct of tensor, we can write the inner product 〈Ai, Âi〉 as 〈Ai, Âi〉 = 〈Ai,Bi ×1

U(1) ×2 U(2) × . . . ×N U(N)〉 = 〈Ai ×1 U(1)T ×2 U(2)T × . . . ×N U(N)T
,Bi〉 =

〈Bi,Bi〉 =‖ Bi ‖2. Since the matrices U(n) have orthogonal columns, they will
not affect the Frobenius norm 7). Therefore, we get ‖ Âi ‖=‖ Bi ‖. Substitut-
ing 〈Ai, Âi〉 =‖ Bi ‖2 and ‖ Âi ‖=‖ Bi ‖ into the cost function, we can get
S =

∑M
i=1 (‖ Ai ‖2 − ‖ Bi ‖2) =

∑M
i=1 (‖ Ai ‖2 − ‖ Ai ×1 U(1)T ×2 U(2)T × . . .

×NU(N)T ‖2) =
∑M

i=1 ‖ Ai ‖2 − S′. The first term,
∑M

i=1 ‖ Ai ‖2, has a fixed
value, so minimization of cost function is equal to maximization of the last term
S′. The theorem is proved.

A.2 The Proof of Lemma 3.3
Proof. We can first represent S′ by S′ =

∑M
i=1 ‖ Ai ×1 U(1)T ×2 U(2)T × . . .×N

U(N)T ‖2=
∑M

i=1 ‖ (Ai ×1 U(1)T ×2 U(2)T × . . . ×n−1 U(n−1)T ×n+1 U(n+1)T ×
. . .×N U(N)T

)×n U(n)T ‖2=
∑M

i=1 ‖ Ci ×n U(n)T ‖2=
∑M

i=1 ‖ U(n)T ·Ci(n) ‖2=∑M
i=1 tr(U(n)T · Ci(n) · CT

i(n) · U(n)) = tr(U(n)T · ∑M
i=1(Ci(n) · CT

i(n)) · U(n)).
Therefore, maximization of the cost function S′ is the same as maximization of
tr(U(n)T ·∑M

i=1(Ci(n)·CT
i(n))·U(n)). This is a well-resolved problem. The solution

is to select columns of the matrix U(n) as the first Jn leading eigenvectors of the
matrix

∑M
i=1 (Ci(n) · CT

i(n)).
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