ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. JIP
  2. Vol.22
  3. No.1

Adaptive Keypose Extraction from Motion Capture Data

https://ipsj.ixsq.nii.ac.jp/records/98179
https://ipsj.ixsq.nii.ac.jp/records/98179
b5ca436a-1729-4281-a60c-040ef890e77b
名前 / ファイル ライセンス アクション
IPSJ-JIP2201009.pdf IPSJ-JIP2201009.pdf (1.2 MB)
Copyright (c) 2014 by the Information Processing Society of Japan
オープンアクセス
Item type JInfP(1)
公開日 2014-01-15
タイトル
タイトル Adaptive Keypose Extraction from Motion Capture Data
タイトル
言語 en
タイトル Adaptive Keypose Extraction from Motion Capture Data
言語
言語 eng
キーワード
主題Scheme Other
主題 [Regular Papers] motion capture, keypose extraction, motion characteristic
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Engineering and Resource Science, Akita University
著者所属
Graduate School of Engineering and Resource Science, Akita University/Digital Art Factory, Warabi-za Co., Ltd.
著者所属
Faculty of Education and Human Studies, Akita University
著者所属
Graduate School of Engineering and Resource Science, Akita University
著者所属
Venture Business Laboratory, Akita University
著者所属
Akita University
著者所属(英)
en
Graduate School of Engineering and Resource Science, Akita University
著者所属(英)
en
Graduate School of Engineering and Resource Science, Akita University / Digital Art Factory, Warabi-za Co., Ltd.
著者所属(英)
en
Faculty of Education and Human Studies, Akita University
著者所属(英)
en
Graduate School of Engineering and Resource Science, Akita University
著者所属(英)
en
Venture Business Laboratory, Akita University
著者所属(英)
en
Akita University
著者名 Takeshi, Miura Takaaki, Kaiga Hiroaki, Katsura Katsubumi, Tajima Takeshi, Shibata Hideo, Tamamoto

× Takeshi, Miura Takaaki, Kaiga Hiroaki, Katsura Katsubumi, Tajima Takeshi, Shibata Hideo, Tamamoto

Takeshi, Miura
Takaaki, Kaiga
Hiroaki, Katsura
Katsubumi, Tajima
Takeshi, Shibata
Hideo, Tamamoto

Search repository
著者名(英) Takeshi, Miura Takaaki, Kaiga Hiroaki, Katsura Katsubumi, Tajima Takeshi, Shibata Hideo, Tamamoto

× Takeshi, Miura Takaaki, Kaiga Hiroaki, Katsura Katsubumi, Tajima Takeshi, Shibata Hideo, Tamamoto

en Takeshi, Miura
Takaaki, Kaiga
Hiroaki, Katsura
Katsubumi, Tajima
Takeshi, Shibata
Hideo, Tamamoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this paper, we present a novel method to extract keyposes from motion-capture data streams. It adaptively extracts keyposes in response to the motion characteristics of a given data stream. We adopt an approach to detect local minima in the temporal variation of motion speed. In the developed algorithm, the intensity of each local minimum is first evaluated by using a set of signals; it is obtained by applying a set of low-pass filters to a one-dimensional motion-speed data stream. The cut-off frequencies of the filters are distributed over a wide frequency range. By adding up the speed-descent values of each local minimum over all the signals, we exhaustively obtain the information on its intensity provided at all the time-scale levels covered by a given data stream. Then, the obtained intensity values are categorized by a clustering algorithm; the local minima categorized as those of little significance are deleted and the remaining ones are fixed as those giving keyposes. Experimental results showed that the present method provided results comparable to the best of those given by the methods previously proposed. This was achieved without readjusting the values of parameters used in the algorithm. Readjustment was indispensable for the other methods to obtain good results.
論文抄録(英)
内容記述タイプ Other
内容記述 In this paper, we present a novel method to extract keyposes from motion-capture data streams. It adaptively extracts keyposes in response to the motion characteristics of a given data stream. We adopt an approach to detect local minima in the temporal variation of motion speed. In the developed algorithm, the intensity of each local minimum is first evaluated by using a set of signals; it is obtained by applying a set of low-pass filters to a one-dimensional motion-speed data stream. The cut-off frequencies of the filters are distributed over a wide frequency range. By adding up the speed-descent values of each local minimum over all the signals, we exhaustively obtain the information on its intensity provided at all the time-scale levels covered by a given data stream. Then, the obtained intensity values are categorized by a clustering algorithm; the local minima categorized as those of little significance are deleted and the remaining ones are fixed as those giving keyposes. Experimental results showed that the present method provided results comparable to the best of those given by the methods previously proposed. This was achieved without readjusting the values of parameters used in the algorithm. Readjustment was indispensable for the other methods to obtain good results.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00700121
書誌情報 Journal of information processing

巻 22, 号 1, p. 67-75, 発行日 2014-01-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6652
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 12:35:40.880083
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3