{"updated":"2025-01-23T03:12:39.237420+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00009788","sets":["581:599:601"]},"path":["601"],"owner":"1","recid":"9788","title":["囲碁における連数の最大値について"],"pubdate":{"attribute_name":"公開日","attribute_value":"2007-11-15"},"_buckets":{"deposit":"03aa7678-30c9-43b5-b7c5-799dcdd113b3"},"_deposit":{"id":"9788","pid":{"type":"depid","value":"9788","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"囲碁における連数の最大値について","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"囲碁における連数の最大値について"},{"subitem_title":"On the Maximum Number of Strings in Go","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"特集:ゲームプログラミング","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"2007-11-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"東京農工大学"},{"subitem_text_value":"電気通信大学"},{"subitem_text_value":"電気通信大学"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Tokyo University of Agriculture and Technology","subitem_text_language":"en"},{"subitem_text_value":"The University of Electro-Communications","subitem_text_language":"en"},{"subitem_text_value":"The University of Electro-Communications","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/9788/files/IPSJ-JNL4811006.pdf"},"date":[{"dateType":"Available","dateValue":"2009-11-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL4811006.pdf","filesize":[{"value":"291.8 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"b6f6232f-8816-4876-881e-dab0894d17f9","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2007 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"宮代, 隆平"},{"creatorName":"矢野, 洋平"},{"creatorName":"村松, 正和"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ryuhei, Miyashiro","creatorNameLang":"en"},{"creatorName":"Yohei, Yano","creatorNameLang":"en"},{"creatorName":"Masakazu, Muramatsu","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"囲碁の盤上において,縦または横に連結している同じ色の石の極大集合を連と呼ぶ.連数最大化問題とは,「囲碁のルールの下でn 路盤上に最大でいくつの連が存在できるか」という問題である.この問題はごく最近に提起され,これまでは16 路盤までの連数の最大値しか求められていなかった.本論文では,連数最大化問題を整数計画問題として定式化し,問題の特徴を利用した制約条件を追加することにより,19 路盤における連数の最大値とその盤面を求めた結果を報告する.","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"In computer Go, a string is defined as a maximal set of connected stones of an identical color. This paper concerns the maximum string problem described as follows: to find a position that maximizes the number of live strings on the n × n Go board. Previous researches proposed a 0-1 integer programming formulation of the maximum string problem, and solved the instances up to n = 16. We reformulate the problem by adding inequalities that break symmetry of the formulation and improve the objective value of linear relaxation. This refinement produces optimal positions up to n = 19, the regular size of Go board.","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"3469","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"3463","bibliographicIssueDates":{"bibliographicIssueDate":"2007-11-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"11","bibliographicVolumeNumber":"48"}]},"relation_version_is_last":true,"item_2_alternative_title_2":{"attribute_name":"その他タイトル","attribute_value_mlt":[{"subitem_alternative_title":"解析"}]},"weko_creator_id":"1"},"created":"2025-01-18T22:44:54.716929+00:00","id":9788,"links":{}}