{"created":"2025-01-18T23:43:40.367485+00:00","updated":"2025-01-21T13:04:06.494062+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00096969","sets":["934:989:7128:7356"]},"path":["7356"],"owner":"11","recid":"96969","title":["特異値分解アルゴリズムの性能評価のための大きな条件数を持つ行列作成"],"pubdate":{"attribute_name":"公開日","attribute_value":"2013-12-27"},"_buckets":{"deposit":"63c9631a-a20c-4c48-ba6c-3390556beb82"},"_deposit":{"id":"96969","pid":{"type":"depid","value":"96969","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"特異値分解アルゴリズムの性能評価のための大きな条件数を持つ行列作成","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"特異値分解アルゴリズムの性能評価のための大きな条件数を持つ行列作成"},{"subitem_title":"Generating Matrices Having Large Condition Numbers for Performance Evaluation of Singular Value Decomposition Algorithms","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"[オリジナル論文] テスト行列,特異値分解,条件数,LAPACK 3.4.2","subitem_subject_scheme":"Other"}]},"item_type_id":"3","publish_date":"2013-12-27","item_3_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"奈良女子大学"},{"subitem_text_value":"京都大学"},{"subitem_text_value":"京都大学"}]},"item_3_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Nara Women's University","subitem_text_language":"en"},{"subitem_text_value":"Kyoto University","subitem_text_language":"en"},{"subitem_text_value":"Kyoto University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/96969/files/IPSJ-TOM0603008.pdf"},"date":[{"dateType":"Available","dateValue":"2015-12-27"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-TOM0603008.pdf","filesize":[{"value":"756.8 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"17"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"9c70d823-659b-4b25-b00a-b350de51f9cc","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2013 by the Information Processing Society of Japan"}]},"item_3_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"髙田, 雅美"},{"creatorName":"木村, 欣司"},{"creatorName":"中村, 佳正"}],"nameIdentifiers":[{}]}]},"item_3_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Masami, Takata","creatorNameLang":"en"},{"creatorName":"Kinji, Kimura","creatorNameLang":"en"},{"creatorName":"Yoshimasa, Nakamura","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_3_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11464803","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_3_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7780","subitem_source_identifier_type":"ISSN"}]},"item_3_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本稿では,特異値分解を評価するために,条件数の大きなテスト行列の作成法を提案する.我々が対象とする条件数は,以下の2種類の定義によるものである.1つ目は,連立1次方程式を解く際の困難さの指標として知られる最大特異値と最小特異値の比による定義である.2つ目は,特異値分解の数値計算の困難さを表す特異値の近接度による条件数の定義である.1つ目の条件数の大きなテスト行列の作成法では,行列のべき乗を利用するもので,密行列を作成することが可能である.一方,2つ目の作成法では,近接固有値を持つglued Wilkinson行列の特異値版ともいえるもので,2重対角行列のみが作成可能である.提案する2種類の作成法の目的は異なるため,それぞれに意義がある.これらの作成法によって作成されるテスト行列を用いて,LAPACK 3.4.2に含まれているいくつかの特異値分解アルゴリズムを評価する.","subitem_description_type":"Other"}]},"item_3_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"In this paper, we propose new generating algorithms for matrices with large condition number to evaluate singular value decomposition. We target two types of definitions of condition numbers. The first is a rario of the maximal and minimal singular values and means the intractableness to solve simultaneous linear equation. The second definition uses adjacent amount in each singular value and indicates the difficulty of numerical singular value decomposition. The first algorithm, which is calculated to a power, can generate dense test matrices. On the other hand, the second algorithm can generate only a bidiagonal test matrix which is a extension of the glued Wilkinson matrix having very closed eigenvalues. Since targets in the proposed algorithms are different, it is important to generate test matrices in two types of condition numbers. By using resulting test matrices which are generated by the proposed algorithms, some singular value decomposition routines in LAPACK version 3.4.2 are evaluated.","subitem_description_type":"Other"}]},"item_3_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"86","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌数理モデル化と応用(TOM)"}],"bibliographicPageStart":"75","bibliographicIssueDates":{"bibliographicIssueDate":"2013-12-27","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicVolumeNumber":"6"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"id":96969,"links":{}}