ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. JIP
  2. Vol.21
  3. No.2

Robust Multipitch Analyzer against Initialization based on Latent Harmonic Allocation using Overtone Corpus

https://ipsj.ixsq.nii.ac.jp/records/95672
https://ipsj.ixsq.nii.ac.jp/records/95672
2893965e-fde0-4e7a-8e09-a67760f83707
名前 / ファイル ライセンス アクション
IPSJ-JIP2102013.pdf IPSJ-JIP2102013.pdf (603.9 kB)
Copyright (c) 2013 by the Information Processing Society of Japan
オープンアクセス
Item type JInfP(1)
公開日 2013-04-15
タイトル
タイトル Robust Multipitch Analyzer against Initialization based on Latent Harmonic Allocation using Overtone Corpus
タイトル
言語 en
タイトル Robust Multipitch Analyzer against Initialization based on Latent Harmonic Allocation using Overtone Corpus
言語
言語 eng
キーワード
主題Scheme Other
主題 [Special Issue on New Directions in Music Information Processing (Special Issue Marking the 20th Anniversary of IPSJ SIGMUS)] multipitch estimation, harmonic clustering, overtone estimation, musical instrument sounds
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Informatics, Kyoto University
著者所属
Graduate School of Informatics, Kyoto University
著者所属
Graduate School of Informatics, Kyoto University/Currently, Faculty of Science and Engineering, Waseda University
著者所属
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者所属(英)
en
Graduate School of Informatics, Kyoto University / Currently, Faculty of Science and Engineering, Waseda University
著者所属(英)
en
Graduate School of Informatics, Kyoto University
著者名 Daichi, Sakaue Katsutoshi, Itoyama Tetsuya, Ogata HiroshiG.Okuno

× Daichi, Sakaue Katsutoshi, Itoyama Tetsuya, Ogata HiroshiG.Okuno

Daichi, Sakaue
Katsutoshi, Itoyama
Tetsuya, Ogata
HiroshiG.Okuno

Search repository
著者名(英) Daichi, Sakaue Katsutoshi, Itoyama Tetsuya, Ogata Hiroshi, G.Okuno

× Daichi, Sakaue Katsutoshi, Itoyama Tetsuya, Ogata Hiroshi, G.Okuno

en Daichi, Sakaue
Katsutoshi, Itoyama
Tetsuya, Ogata
Hiroshi, G.Okuno

Search repository
論文抄録
内容記述タイプ Other
内容記述 We present a Bayesian analysis method that estimates the harmonic structure of musical instruments in music signals on the basis of psychoacoustic evidence. Since the main objective of multipitch analysis is joint estimation of the fundamental frequencies and their harmonic structures, the performance of harmonic structure estimation significantly affects fundamental frequency estimation accuracy. Many methods have been proposed for estimating the harmonic structure accurately, but no method has been proposed that satisfies all these requirements: robust against initialization, optimization-free, and psychoacoustically appropriate and thus easy to develop further. Our method satisfies these requirements by explicitly incorporating Terhardt's virtual pitch theory within a Bayesian framework. It does this by automatically learning the valid weight range of the harmonic components using a MIDI synthesizer. The bounds are termed “overtone corpus.” Modeling demonstrated that the proposed overtone corpus method can stably estimate the harmonic structure of 40 musical pieces for a wide variety of initial settings.
論文抄録(英)
内容記述タイプ Other
内容記述 We present a Bayesian analysis method that estimates the harmonic structure of musical instruments in music signals on the basis of psychoacoustic evidence. Since the main objective of multipitch analysis is joint estimation of the fundamental frequencies and their harmonic structures, the performance of harmonic structure estimation significantly affects fundamental frequency estimation accuracy. Many methods have been proposed for estimating the harmonic structure accurately, but no method has been proposed that satisfies all these requirements: robust against initialization, optimization-free, and psychoacoustically appropriate and thus easy to develop further. Our method satisfies these requirements by explicitly incorporating Terhardt's virtual pitch theory within a Bayesian framework. It does this by automatically learning the valid weight range of the harmonic components using a MIDI synthesizer. The bounds are termed “overtone corpus.” Modeling demonstrated that the proposed overtone corpus method can stably estimate the harmonic structure of 40 musical pieces for a wide variety of initial settings.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00700121
書誌情報 Journal of information processing

巻 21, 号 2, p. 246-255, 発行日 2013-04-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6652
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 13:38:57.957129
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3