ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. JIP
  2. Vol.20
  3. No.3

Detecting Significant Locations from Raw GPS Data Using Random Space Partitioning

https://ipsj.ixsq.nii.ac.jp/records/95626
https://ipsj.ixsq.nii.ac.jp/records/95626
061d62f7-5946-4418-a6d2-269c7e62534c
名前 / ファイル ライセンス アクション
IPSJ-JIP2003032.pdf IPSJ-JIP2003032.pdf (1.3 MB)
Copyright (c) 2012 by the Information Processing Society of Japan
オープンアクセス
Item type JInfP(1)
公開日 2012-07-15
タイトル
タイトル Detecting Significant Locations from Raw GPS Data Using Random Space Partitioning
タイトル
言語 en
タイトル Detecting Significant Locations from Raw GPS Data Using Random Space Partitioning
言語
言語 eng
キーワード
主題Scheme Other
主題 [Special Issue on ICT Activating Society] significant locations, GPS, random partitioning, LSH
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
System Platforms Research Laboratories, NEC Corporation
著者所属
System Platforms Research Laboratories, NEC Corporation
著者所属
System Platforms Research Laboratories, NEC Corporation
著者所属
System Platforms Research Laboratories, NEC Corporation
著者所属
RCAST, The University of Tokyo
著者所属(英)
en
System Platforms Research Laboratories, NEC Corporation
著者所属(英)
en
System Platforms Research Laboratories, NEC Corporation
著者所属(英)
en
System Platforms Research Laboratories, NEC Corporation
著者所属(英)
en
System Platforms Research Laboratories, NEC Corporation
著者所属(英)
en
RCAST, The University of Tokyo
著者名 Nobuharu, Kami Teruyuki, Baba Satoshi, Ikeda Takashi, Yoshikawa Hiroyuki, Morikawa

× Nobuharu, Kami Teruyuki, Baba Satoshi, Ikeda Takashi, Yoshikawa Hiroyuki, Morikawa

Nobuharu, Kami
Teruyuki, Baba
Satoshi, Ikeda
Takashi, Yoshikawa
Hiroyuki, Morikawa

Search repository
著者名(英) Nobuharu, Kami Teruyuki, Baba Satoshi, Ikeda Takashi, Yoshikawa Hiroyuki, Morikawa

× Nobuharu, Kami Teruyuki, Baba Satoshi, Ikeda Takashi, Yoshikawa Hiroyuki, Morikawa

en Nobuharu, Kami
Teruyuki, Baba
Satoshi, Ikeda
Takashi, Yoshikawa
Hiroyuki, Morikawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 We present a fast algorithm for probabilistically extracting significant locations from raw GPS data based on data point density. Extracting significant locations from raw GPS data is the first essential step of algorithms designed for location-aware applications. Most current algorithms compare spatial/temporal variables with given fixed thresholds to extract significant locations. However, the appropriate threshold values are not clearly known in priori, and algorithms with fixed thresholds are inherently error-prone, especially under high noise levels. Moreover, they do not often scale in response to increase in system size since direct distance computation is required. We developed a fast algorithm for selective data point sampling around significant locations based on density information by constructing random histograms using locality-sensitive hashing. Theoretical analysis and evaluations show that significant locations are accurately detected with a loose parameter setting even under high noise levels.
論文抄録(英)
内容記述タイプ Other
内容記述 We present a fast algorithm for probabilistically extracting significant locations from raw GPS data based on data point density. Extracting significant locations from raw GPS data is the first essential step of algorithms designed for location-aware applications. Most current algorithms compare spatial/temporal variables with given fixed thresholds to extract significant locations. However, the appropriate threshold values are not clearly known in priori, and algorithms with fixed thresholds are inherently error-prone, especially under high noise levels. Moreover, they do not often scale in response to increase in system size since direct distance computation is required. We developed a fast algorithm for selective data point sampling around significant locations based on density information by constructing random histograms using locality-sensitive hashing. Theoretical analysis and evaluations show that significant locations are accurately detected with a loose parameter setting even under high noise levels.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00700121
書誌情報 Journal of information processing

巻 20, 号 3, p. 757-766, 発行日 2012-07-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6652
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 13:41:21.308879
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3