ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2013
  4. 2013-CVIM-188

Study on Illumination Insensitive Face Detection Based on Normalization Techniques

https://ipsj.ixsq.nii.ac.jp/records/94842
https://ipsj.ixsq.nii.ac.jp/records/94842
6b288736-3383-47de-8095-8d964c1f306f
名前 / ファイル ライセンス アクション
IPSJ-CVIM13188001.pdf IPSJ-CVIM13188001.pdf (362.6 kB)
 2100年1月1日からダウンロード可能です。
Copyright (c) 2013 by the Institute of Electronics, Information and Communication Engineers
This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2013-08-26
タイトル
タイトル Study on Illumination Insensitive Face Detection Based on Normalization Techniques
タイトル
言語 en
タイトル Study on Illumination Insensitive Face Detection Based on Normalization Techniques
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Information Processing, Tokyo Institute of Technology
著者所属
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology
著者所属(英)
en
Department of Information Processing, Tokyo Institute of Technology
著者所属(英)
en
Imaging Science and Engineering Laboratory, Tokyo Institute of Technology
著者名 Min, Yao Hiroshi, Nagahashi

× Min, Yao Hiroshi, Nagahashi

Min, Yao
Hiroshi, Nagahashi

Search repository
著者名(英) Min, Yao Hiroshi, Nagahashi

× Min, Yao Hiroshi, Nagahashi

en Min, Yao
Hiroshi, Nagahashi

Search repository
論文抄録
内容記述タイプ Other
内容記述 Face detection has been attracting much academic attention. Illumination problem is one of the most important aspects that decreases its performance. Conventional methods have focused on extracting illumination invariant features or utilizing skin color information. However, the features and colors are unreliable in adverse lighting conditions. In this paper, we investigate various illumination normalization techniques for learning-based face detection under varying illumination. They are four illumination insensitive face representation techniques and five histogram-based normalization methods including our proposed method SH (segmentation-based HHTS). The experimental results show that 1) effective illumination normalization techniques in face recognition are not necessarily useful in face detection; 2) histogram-based methods significantly outperform illumination insensitive face representation techniques in average; 3) SH obtains the best results.
論文抄録(英)
内容記述タイプ Other
内容記述 Face detection has been attracting much academic attention. Illumination problem is one of the most important aspects that decreases its performance. Conventional methods have focused on extracting illumination invariant features or utilizing skin color information. However, the features and colors are unreliable in adverse lighting conditions. In this paper, we investigate various illumination normalization techniques for learning-based face detection under varying illumination. They are four illumination insensitive face representation techniques and five histogram-based normalization methods including our proposed method SH (segmentation-based HHTS). The experimental results show that 1) effective illumination normalization techniques in face recognition are not necessarily useful in face detection; 2) histogram-based methods significantly outperform illumination insensitive face representation techniques in average; 3) SH obtains the best results.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2013-CVIM-188, 号 1, p. 1-6, 発行日 2013-08-26
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 14:19:14.267625
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3