ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. Computer Vision and Applications(CVA)
  3. Vol.5

A Weighted Integral Method for Parametrically Describing Local Image Appearance

https://ipsj.ixsq.nii.ac.jp/records/94701
https://ipsj.ixsq.nii.ac.jp/records/94701
b1dd94b5-87eb-4b08-bfcd-d76cda21d92a
名前 / ファイル ライセンス アクション
IPSJ-TCVA0500013.pdf IPSJ-TCVA0500013.pdf (2.7 MB)
Copyright (c) 2013 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2013-07-29
タイトル
タイトル A Weighted Integral Method for Parametrically Describing Local Image Appearance
タイトル
言語 en
タイトル A Weighted Integral Method for Parametrically Describing Local Image Appearance
言語
言語 eng
キーワード
主題Scheme Other
主題 [Regular Paper - Express Paper] feature description, parameter estimation problem, scale analysis, weighted integral method
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Nagoya Institute of Technology
著者所属
Nagoya Institute of Technology
著者所属(英)
en
Nagoya Institute of Technology
著者所属(英)
en
Nagoya Institute of Technology
著者名 Hidetoshi, Goto Hidekata, Hontani

× Hidetoshi, Goto Hidekata, Hontani

Hidetoshi, Goto
Hidekata, Hontani

Search repository
著者名(英) Hidetoshi, Goto Hidekata, Hontani

× Hidetoshi, Goto Hidekata, Hontani

en Hidetoshi, Goto
Hidekata, Hontani

Search repository
論文抄録
内容記述タイプ Other
内容記述 We propose a new method that efficiently and accurately estimates the parameters of the Gaussian function that describes the given local image profiles. The Gaussian function is non-linear with respect to the parameters to be estimated, and this non-linearity makes their efficient and accurate estimation difficult. In our proposed method, the weighted integral method is introduced to linearize the parameter estimation problem: A system of differential equations is firstly derived that is satisfied by the Gaussian function and that is linear with respect to the parameters. The system is then converted to that of integral equations. Given a local sub-window of the image, one can obtain the system of integral equations and estimate the parameters of the Gaussian that describe the appearance in the sub-window by solving the linear system of the parameters. Experimental results showed that our proposed method estimates the parameters more efficiently and accurately than existing state-of-the-art methods.
論文抄録(英)
内容記述タイプ Other
内容記述 We propose a new method that efficiently and accurately estimates the parameters of the Gaussian function that describes the given local image profiles. The Gaussian function is non-linear with respect to the parameters to be estimated, and this non-linearity makes their efficient and accurate estimation difficult. In our proposed method, the weighted integral method is introduced to linearize the parameter estimation problem: A system of differential equations is firstly derived that is satisfied by the Gaussian function and that is linear with respect to the parameters. The system is then converted to that of integral equations. Given a local sub-window of the image, one can obtain the system of integral equations and estimate the parameters of the Gaussian that describe the appearance in the sub-window by solving the linear system of the parameters. Experimental results showed that our proposed method estimates the parameters more efficiently and accurately than existing state-of-the-art methods.
書誌情報 IPSJ Transactions on Computer Vision and Applications (CVA)

巻 5, p. 70-74, 発行日 2013-07-29
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-6695
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 14:27:15.320519
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3