ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. アルゴリズム(AL)
  3. 2012
  4. 2012-AL-142

不動点定理によるドロネー性の確認

https://ipsj.ixsq.nii.ac.jp/records/86132
https://ipsj.ixsq.nii.ac.jp/records/86132
a3234386-6b93-411c-bca7-9075043270be
名前 / ファイル ライセンス アクション
IPSJ-AL12142001.pdf IPSJ-AL12142001.pdf (361.4 kB)
Copyright (c) 2012 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2012-10-26
タイトル
タイトル 不動点定理によるドロネー性の確認
タイトル
言語 en
タイトル Characterizing Delaunay Graphs via Fixed Point Theorem
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Chuo University
著者所属
Sophia University
著者所属(英)
en
Chuo University
著者所属(英)
en
Sophia University
著者名 Tomomi, Matsui Yuichiro, Miyamoto

× Tomomi, Matsui Yuichiro, Miyamoto

Tomomi, Matsui
Yuichiro, Miyamoto

Search repository
著者名(英) Tomomi, Matsui Yuichiro, Miyamoto

× Tomomi, Matsui Yuichiro, Miyamoto

en Tomomi, Matsui
Yuichiro, Miyamoto

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper discusses a problem for determining whether a given plane graph is a Delaunay graph, i.e., whether it is topologically equivalent to a Delaunay triangulation. There exists a theorem which characterizes Delaunay graphs and yields a polynomial time algorithm for the problem only by solving a certain linear inequality system. The theorem was proved by Rivin based on arguments of hyperbolic geometry. Independently, Hiroshima, Miyamoto and Sugihara gave another proof of the theorem based on primitive arguments on Euclidean geometry. Unfortunately, the existing proofs of the theorem are rather difficult or long. In this paper, we give a simple proof of the theorem characterizing Delaunay graphs, which is based on the fixed point theorem.
論文抄録(英)
内容記述タイプ Other
内容記述 This paper discusses a problem for determining whether a given plane graph is a Delaunay graph, i.e., whether it is topologically equivalent to a Delaunay triangulation. There exists a theorem which characterizes Delaunay graphs and yields a polynomial time algorithm for the problem only by solving a certain linear inequality system. The theorem was proved by Rivin based on arguments of hyperbolic geometry. Independently, Hiroshima, Miyamoto and Sugihara gave another proof of the theorem based on primitive arguments on Euclidean geometry. Unfortunately, the existing proofs of the theorem are rather difficult or long. In this paper, we give a simple proof of the theorem characterizing Delaunay graphs, which is based on the fixed point theorem.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN1009593X
書誌情報 研究報告アルゴリズム(AL)

巻 2012-AL-142, 号 1, p. 1-6, 発行日 2012-10-26
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 17:48:17.292995
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3