@inproceedings{oai:ipsj.ixsq.nii.ac.jp:00080263, author = {黒田, 明義 and 長谷川, 幸弘 and 寺井, 優晃 and 井上, 俊介 and 市川, 真一 and 小松, 秀実 and 大井, 憲行 and 安藤, 琢也 and 山崎, 隆浩 and 大野, 隆央 and 南, 一生 and Akiyoshi, Kuroda and Yukihiro, Hasegawa and Masaaki, Terai and Shunsuke, Inoue and Shin-ichi, Ichikawa and Hidemi, Komatsu and Noriyuki, Ohi and Takuya, Ando and Takahiro, Yamasaki and Takahisa, Ohno and Kazuo, Minami}, book = {ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集}, month = {Jan}, note = {ナノ材料第一原理分子動力学プログラム 「PHASE」 を対象に京速コンピュータ 「京」 向けの計算性能最適化を実施した.本アプリケーションで用いられる密度汎関数法における収束計算には最急降下法や共役勾配法などが使われ,直交化や対角化の処理を含む.また波動関数をフーリエ級数展開するためFFT計算が用いられている.これらは系の大きさに対して最大 3 乗の演算量を持つため,計算方法の工夫により大幅な性能向上が見込まれるが,計算サイズの拡大は困難であり超並列化が難しいとされている.本論文では,大規模計算にて画期的な研究成果をあげることを目的に行った計算性能最適化について,その手法を紹介する.また実測評価にて並列性能が向上し,20% 程度の実行効率達成の見込みを得たので報告する., We optimize the first-principles molecular dynamics simulator for nanomaterials "PHASE" targeting the K computer. PHASE performs convergence calculations using the steepest descent and the conjugate gradient methods, which are based on orthogonalization and diagonalization. Also, FFT is used in order to expand wave functions with the Fourier series. These calculations are O(N3) for a given system size N. For this reason, we expect to increase sustained performance largely by improving the calculation methods. However, it has been said that it is difficult to achieve massive parallelism because calculation time diverges in large systems. In this paper, we introduce optimization methods developed to achieve outstanding research results with large scale computations. By doing actual performance measurements with the K computer, we confirm that the methods increase parallel performance and achieve sustained performance of 20 % or higher.}, pages = {144--152}, publisher = {情報処理学会}, title = {ナノ材料第一原理分子動力学プログラムPHASEの京速コンピュータ「京」上の計算性能最適化}, volume = {2012}, year = {2012} }