{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00077972","sets":["6164:6165:6462:6551"]},"path":["6551"],"owner":"10","recid":"77972","title":["数値属性における, k-匿名性を満たすランダム化手法"],"pubdate":{"attribute_name":"公開日","attribute_value":"2011-10-12"},"_buckets":{"deposit":"52b7a66a-df9d-4d2e-8f03-c34df54a0f49"},"_deposit":{"id":"77972","pid":{"type":"depid","value":"77972","revision_id":0},"owners":[10],"status":"published","created_by":10},"item_title":"数値属性における, k-匿名性を満たすランダム化手法","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"数値属性における, k-匿名性を満たすランダム化手法"},{"subitem_title":"Randomized k-Anonymization for Numeric Attributes","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"データ匿名化","subitem_subject_scheme":"Other"}]},"item_type_id":"18","publish_date":"2011-10-12","item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_18_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"NTT情報流通プラットフォーム研究所"},{"subitem_text_value":"NTT情報流通プラットフォーム研究所"},{"subitem_text_value":"NTT情報流通プラットフォーム研究所"}]},"item_18_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"NTT Information Sharing Platform Laboratories","subitem_text_language":"en"},{"subitem_text_value":"NTT Information Sharing Platform Laboratories","subitem_text_language":"en"},{"subitem_text_value":"NTT Information Sharing Platform Laboratories","subitem_text_language":"en"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/77972/files/IPSJCSS2011077.pdf"},"date":[{"dateType":"Available","dateValue":"2012-10-12"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJCSS2011077.pdf","filesize":[{"value":"65.2 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"44"},{"tax":["include_tax"],"price":"30000","billingrole":"5"}],"accessrole":"open_date","version_id":"ddd91ae1-954b-42b4-9d3d-2897f8bc7e1b","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2011 by the Information Processing Society of Japan"}]},"item_18_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"五十嵐, 大"},{"creatorName":"千田, 浩司"},{"creatorName":"高橋, 克巳"}],"nameIdentifiers":[{}]}]},"item_18_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Dai, Ikarashi","creatorNameLang":"en"},{"creatorName":"Koji, Chida","creatorNameLang":"en"},{"creatorName":"Katsumi, Takahashi","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_5794","resourcetype":"conference paper"}]},"item_18_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"近年, プライバシーを保護しつつデータを活用する研究が活発に行われており, その中でもk-匿名性を実現するk-匿名法は特に注目されている. 一方確定的アルゴリズムを用いるk-匿名化でなく, データのランダム化による匿名化手法も研究されている. CSS2009において筆者らはランダム化したデータベース上のk-匿名性, Pk-匿名性を定義しその実現方法を示した. しかし対象は例えば性別のように値の種類の少ない, カテゴリ属性のみであった. 本稿ではこれを身長や年収などの数値属性に拡張する. 具体的には, ラプラスノイズと呼ばれるノイズの加算がPk-匿名性を満たすことを示し, 有用性とPk-匿名性の両立の観点からは本ノイズが最適であることを示す.","subitem_description_type":"Other"}]},"item_18_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Recently, studies on the utilizing data privately, are widely conducted. Among them, kanonymity is especially paid attention to. On the other hand, in community of database and statistics, not only k-anonymity, which adopt non-probabilistic algorithm, but also anonymization using data randomization is expected and has been studied. In CSS2009, we defined Pk-anonymity, which is k-anonymity on a randomized database, and showed a method for satisfying Pk-anonymity. However, it was applicable only to categorical attributes. In this paper, we extend it to numerical attributes. First, we show that the addition of a noise on a unbounded numerical attribute can not satisfy Pkanonymity, and that even on a bounded attribute, the addition of the uniform distribution and the normal distribution proposed by Aggrawal et al. can not satisfy it. Finally, we show that a noise called Laplase distribution satisfies Pk-anonymity on a bounded numerical attribute.","subitem_description_type":"Other"}]},"item_18_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"455","bibliographic_titles":[{"bibliographic_title":"コンピュータセキュリティシンポジウム2011 論文集"}],"bibliographicPageStart":"450","bibliographicIssueDates":{"bibliographicIssueDate":"2011-10-12","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicVolumeNumber":"2011"}]},"relation_version_is_last":true,"weko_creator_id":"10"},"updated":"2025-01-21T20:42:26.343044+00:00","created":"2025-01-18T23:33:26.821912+00:00","links":{},"id":77972}