@inproceedings{oai:ipsj.ixsq.nii.ac.jp:00077954,
 author = {根角, 健太 and 野上, 保之 and 森岡, 恵理 and Kenta, Nekado and Yasuyuki, Nogami and Eri, Morioka},
 book = {コンピュータセキュリティシンポジウム2011 論文集},
 issue = {3},
 month = {Oct},
 note = {AESのSubBytes変換では,線形解読法の対策として非線形処理である有限体F_{2^8}上の逆元計算を採用している.この逆元計算を回路実装する場合,最大遅延時間を短かくし,かつ可能な限り回路規模を小さく実装するためには,F_{2^8}の替わりに逐次拡大体上の逆元計算を利用することが望ましい.そこで本稿では,まず逐次拡大体F_{(2^4)^2}を構成するための既約多項式および基底の中で最適なものを模索する.さらに,逆元計算を高速化するため,F_{2^4}上の基底を冗長に表現する方法を提案する.その冗長に表現された基底を用いることで,逆元計算内部の処理の並列化を促し,回路規模を増大させることなく回路の最大遅延時間をより短くできることを示す., A lot of improvements and optimizations for the hardware implementation of SB{} transform for AES, in detail inversion} in F, have been reported. Instead of the AES original F_{2^8}, it is known that not only its isomorphic tower field F_{((2^2)^2)^2} but also F_{(2^4)^2}  have more efficient inversions. Thus, this paper first considers efficient inversion in F_{(2^4)^2}  with conventional techniques. Moreover, in order to reduce the critical path delay of inversion in F_{(2^4)^2}, this paper proposes Redundantly Represented Basis (RRB).},
 pages = {343--348},
 publisher = {情報処理学会},
 title = {冗長表現基底によるF_{(2^4)^2}上の逆元計算を用いたAESのSubBytes変換},
 volume = {2011},
 year = {2011}
}