{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00077613","sets":["1164:2240:6352:6537"]},"path":["6537"],"owner":"10","recid":"77613","title":["時間方向並列化の線形計算への適用可能性"],"pubdate":{"attribute_name":"公開日","attribute_value":"2011-09-29"},"_buckets":{"deposit":"a125df30-fff9-4023-bd71-575f273a40ad"},"_deposit":{"id":"77613","pid":{"type":"depid","value":"77613","revision_id":0},"owners":[10],"status":"published","created_by":10},"item_title":"時間方向並列化の線形計算への適用可能性","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"時間方向並列化の線形計算への適用可能性"},{"subitem_title":"Applicability of Time-domain Parallelism to Iterative Linear Calculus","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"数値線形代数","subitem_subject_scheme":"Other"}]},"item_type_id":"4","publish_date":"2011-09-29","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"九州大学"},{"subitem_text_value":"九州大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"kyushu University","subitem_text_language":"en"},{"subitem_text_value":"kyushu University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/77613/files/IPSJ-HPC11131006.pdf"},"date":[{"dateType":"Available","dateValue":"2013-09-29"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-HPC11131006.pdf","filesize":[{"value":"1.2 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"14"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"8fd64c56-5a24-4591-ab14-baa9138143a9","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2011 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"高見, 利也"},{"creatorName":"西田, 晃"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Toshiya, Takami","creatorNameLang":"en"},{"creatorName":"Akira, Nishida","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10463942","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"時間方向並列化手法として知られているParareal-in-Time法は,常微分方程式や偏微分方程式の時間発展問題に適用した場合の収束性を中心に研究されてきたが,本研究では,行列ベクトル積や反復法など,線形計算への適用を検討する.まず,時間方向並列化の直接の発展として,行列ベクトル積により定義されたベクトル列を並列に計算する問題を扱う.この手法を摂動展開として理解することで収束性に関する解析を行い,さらに,並列計算によるスピードアップ比の測定を通して,適用範囲,および,限界を明らかにする.また,一般の反復法への応用可能性についても検証し報告する.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"The time-domain parallelism, known as Parareal-in-Time algorithm, has been applied to scientific problems described by ordinary differential equations or partial differential equations. In this report, applicability of this algorithm to simple linear transformations such as matrix-vector multiplications, iterative calculus, etc., is studied through convergence and speed-up. At first, as a direct application of this algorithm, convergence to a series of vectors defined by matrix multiplications is analyzed from the viewpoint of perturbation. The speed-up ratio by this algorithm on a distributed parallel machine is measured and appropriate problem sizes for this scheme are analyzed. In addition to these analysis, applicability to general iterative calculations is reported.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"8","bibliographic_titles":[{"bibliographic_title":"研究報告ハイパフォーマンスコンピューティング(HPC)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2011-09-29","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"6","bibliographicVolumeNumber":"2011-HPC-131"}]},"relation_version_is_last":true,"weko_creator_id":"10"},"id":77613,"updated":"2025-01-21T20:50:52.266657+00:00","links":{},"created":"2025-01-18T23:33:09.705806+00:00"}