WEKO3
アイテム
Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning
https://ipsj.ixsq.nii.ac.jp/records/77292
https://ipsj.ixsq.nii.ac.jp/records/772928168fbff-1c71-4f23-af34-e2aa3a674e1d
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]()
2100年1月1日からダウンロード可能です。
|
Copyright (c) 2011 by the Institute of Electronics, Information and Communication Engineers
This SIG report is only available to those in membership of the SIG. |
|
CVIM:会員:¥0, DLIB:会員:¥0 |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2011-08-29 | |||||||
タイトル | ||||||||
タイトル | Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | テーマセッション4 | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Department of Computer Science, Tokyo Institute of Technology | ||||||||
著者所属 | ||||||||
Department of Computer Science, Tokyo Institute of Technology | ||||||||
著者所属 | ||||||||
Department of Computer Science, Tokyo Institute of Technology | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science, Tokyo Institute of Technology | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science, Tokyo Institute of Technology | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Department of Computer Science, Tokyo Institute of Technology | ||||||||
著者名 |
Ning, Xie
Hirotaka, Hachiya
Masashi, Sugiyama
× Ning, Xie Hirotaka, Hachiya Masashi, Sugiyama
|
|||||||
著者名(英) |
Ning, Xie
Hirotaka, Hachiya
Masashi, Sugiyama
× Ning, Xie Hirotaka, Hachiya Masashi, Sugiyama
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AA11131797 | |||||||
書誌情報 |
研究報告コンピュータビジョンとイメージメディア(CVIM) 巻 2011-CVIM-178, 号 18, p. 1-7, 発行日 2011-08-29 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |