ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2011
  4. 2011-CVIM-178

Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning

https://ipsj.ixsq.nii.ac.jp/records/77292
https://ipsj.ixsq.nii.ac.jp/records/77292
8168fbff-1c71-4f23-af34-e2aa3a674e1d
名前 / ファイル ライセンス アクション
IPSJ-CVIM11178018.pdf IPSJ-CVIM11178018.pdf (1.3 MB)
 2100年1月1日からダウンロード可能です。
Copyright (c) 2011 by the Institute of Electronics, Information and Communication Engineers
This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2011-08-29
タイトル
タイトル Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning
タイトル
言語 en
タイトル Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 テーマセッション4
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Computer Science, Tokyo Institute of Technology
著者所属
Department of Computer Science, Tokyo Institute of Technology
著者所属
Department of Computer Science, Tokyo Institute of Technology
著者所属(英)
en
Department of Computer Science, Tokyo Institute of Technology
著者所属(英)
en
Department of Computer Science, Tokyo Institute of Technology
著者所属(英)
en
Department of Computer Science, Tokyo Institute of Technology
著者名 Ning, Xie Hirotaka, Hachiya Masashi, Sugiyama

× Ning, Xie Hirotaka, Hachiya Masashi, Sugiyama

Ning, Xie
Hirotaka, Hachiya
Masashi, Sugiyama

Search repository
著者名(英) Ning, Xie Hirotaka, Hachiya Masashi, Sugiyama

× Ning, Xie Hirotaka, Hachiya Masashi, Sugiyama

en Ning, Xie
Hirotaka, Hachiya
Masashi, Sugiyama

Search repository
論文抄録
内容記述タイプ Other
内容記述 Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments.
論文抄録(英)
内容記述タイプ Other
内容記述 Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2011-CVIM-178, 号 18, p. 1-7, 発行日 2011-08-29
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-21 20:59:08.123925
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3