{"created":"2025-01-18T23:31:05.640137+00:00","updated":"2025-01-21T22:09:19.917817+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00072921","sets":["1164:2592:6240:6332"]},"path":["6332"],"owner":"10","recid":"72921","title":["Hoffmanパズル解の列挙と一般化に関する研究"],"pubdate":{"attribute_name":"公開日","attribute_value":"2011-02-28"},"_buckets":{"deposit":"7de57828-8043-41c1-bf7e-34f295124af1"},"_deposit":{"id":"72921","pid":{"type":"depid","value":"72921","revision_id":0},"owners":[10],"status":"published","created_by":10},"item_title":"Hoffmanパズル解の列挙と一般化に関する研究","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Hoffmanパズル解の列挙と一般化に関する研究"},{"subitem_title":"On the Hoffman Puzzle and its generalization","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2011-02-28","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"北陸先端科学技術大学院大学"},{"subitem_text_value":"北陸先端科学技術大学院大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Japan Advanced Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Japan Advanced Institute of Science and Technology","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/72921/files/IPSJ-AL11134018.pdf"},"date":[{"dateType":"Available","dateValue":"2013-02-28"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL11134018.pdf","filesize":[{"value":"358.5 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"4ed1cb48-f376-4b16-9ccb-64b6034e6d4c","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2011 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"後藤, 新"},{"creatorName":"上原, 隆平"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Arata, Goto","creatorNameLang":"en"},{"creatorName":"Ryuhei, Uehara","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"大きさ (a + b + c)×(a + b + c)×(a + b + c) の箱に大きさ a×b×c の直方体のブロックを27個詰め込むパズルは Hoffman パズルと呼ばれている.これは D. G. Hoffman が 1978 年に提案したパズルで,非常に難しいパズルとして知られていて,21 通りの解を持つことがわかっている.ホフマンパズルでは辺の長さに (a + b + c)/4 < a < b < c という条件をおいている.2004 年に D. E. Knuth はこの条件を緩めて (a + b + c)/4 = a < b < c とし,(a,b,c) = (3,4,5) のとき,28 個目のブロックが入ることを示した.しかしその詳細はよくわかっていない.本研究では Knuth の拡張したパズルを解析し,28 個目のブロックが入るための条件を明らかにした.また 28 個目のピースが入る場合のすべての解を示した.さらに 29 個以上は入らないことを証明した.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"The packing problem of 27 blocks of size a×b×c into a box of size (a + b + c)×(a + b + c)×(a + b + c)is called the Hoffman puzzle. This puzzle was proposed by D. G. Hoffman in 1978, and it is well known as a “difficult” puzzle that has 21 solutions. In the Hoffman puzzle, the lengths should satisfy the condition (a + b + c)/4 < a < b < c. In 2004, D. E. Knuth loosened the condition to (a + b + c)/4 = a < b < c, and showed that we can pack the 28th block in the case (a; b; c) = (3; 4; 5). However, more details are not known. In this paper, we analyze this extended Hoffman-Knuth puzzle, and investigate the condition that the 28th block can be packed. We also show all solutions of this puzzle, and prove that we cannot pack the 29th block.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"4","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2011-02-28","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"18","bibliographicVolumeNumber":"2011-AL-134"}]},"relation_version_is_last":true,"weko_creator_id":"10"},"id":72921,"links":{}}