@techreport{oai:ipsj.ixsq.nii.ac.jp:00070313,
 author = {古宮, 嘉那子 and 奥村, 学 and Kanako, Komiya and Manabu, Okumura},
 issue = {5},
 month = {Sep},
 note = {ソースドメインのデータによって分類器を作り,ターゲットドメインに適応することを領域適応といい,近年さまざまな手法が研究されている.本稿では,WSD (Word Sense Disambiguation,語義曖昧性解消) について領域適応を行った場合,ソースデータとターゲットデータの性質により,最も効果的な領域適応手法が異なることを示す.また,決定木学習を用いてそれらの性質から,最も効果的な領域適応手法を自動的に選択する手法について述べる.それぞれ自動的に選択された手法を用いて領域適応を行うことで,もともとの手法を一括的に使った時に比べ,WSD の平均の正解率が有意に向上した., Domain adaptation; to adapt the classifier developed from source data to target data has been studied intensively in recent years. In this paper the authors show that when domain adaptation for WSD (word sense disambiguation) was performed, the most effective domain adaptation method varies according to the properties of the source data and target data. This paper also describes the way to select the most effective method for domain adaptation depending on these properties using decision tree learning. The average accuracy of WSD showed significant improvement when the domain adaptation method which is selected automatically was used respectively, compared to when the original methods were used collectively.},
 title = {語義曖昧性解消のための領域適応手法の自動選択},
 year = {2010}
}