{"updated":"2025-01-21T23:34:55.876939+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00070147","sets":["581:5994:6149"]},"path":["6149"],"owner":"11","recid":"70147","title":["{\\boldmath $\\tau$}法による{\\boldmath$x$}が大きい場合の{\\boldmath$x\\{J_{\\nu}^{2}(x)+Y_{\\nu}^{2}(x)\\}$}の数値計算"],"pubdate":{"attribute_name":"公開日","attribute_value":"2010-08-15"},"_buckets":{"deposit":"8cac2a26-7b85-4e6b-96d3-8b267be71ac9"},"_deposit":{"id":"70147","pid":{"type":"depid","value":"70147","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"{\\boldmath $\\tau$}法による{\\boldmath$x$}が大きい場合の{\\boldmath$x\\{J_{\\nu}^{2}(x)+Y_{\\nu}^{2}(x)\\}$}の数値計算","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"{\\boldmath $\\tau$}法による{\\boldmath$x$}が大きい場合の{\\boldmath$x\\{J_{\\nu}^{2}(x)+Y_{\\nu}^{2}(x)\\}$}の数値計算"},{"subitem_title":"Computation of {\\boldmath$x\\{J_{\\nu}^{2}(x)+Y_{\\nu}^{2}(x)\\}$} for Large Argument {\\boldmath$x$} by Using the {\\boldmath$\\tau$}-method","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"一般論文","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"2010-08-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"中部大学"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Chubu University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/70147/files/IPSJ-JNL5108001.pdf"},"date":[{"dateType":"Available","dateValue":"2012-08-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL5108001.pdf","filesize":[{"value":"178.4 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"fd044e0b-c591-4fbd-a286-5e69e4fbf472","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2010 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"吉田, 年雄"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Toshio, Yoshida","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本論文では,$x M^{2}_{\nu}(x)=x\\{J_{\nu}^{2}(x)+Y_{\nu}^{2}(x)\\}$について,変数$x$が大きい場合の能率的な計算法を提案している.ここで,$J_{\nu}(x)$および$Y_{\nu}(x)$はベッセル関数である.$xM_{\nu}^{2}(x)$は$xM_{\nu}^{2}(x)=(1/\\sqrt{t})M_{\nu}^{2}(1/\\sqrt{t})=f_{\nu}(t)$のように書くことができ,$f_{\nu}(t)$は,微分方程式$8t^{3}f_{\nu}'''(t)+36t^{2}f_{\nu}''(t)+\\{(26-8\nu^{2})t+8\\}f_{\nu}'(t)-(4\nu^{2}-1)f_{\nu}(t)=0$を満足する.上式に$\\tau$法を適用すると,$f_{\nu}(t)$の近似式が求められ,式の変形や工夫を行うことより,能率的な計算式が得られる.","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"In this paper, we propose an efficient numerical method for $x M^{2}_{\nu}(x)=x\\{J_{\nu}^{2}(x)+Y_{\nu}^{2}(x)\\}$ with large argument $x$, where $J_{\nu}(x)$ and $Y_{\nu}(x)$ are Bessel functions. The function $xM_{\nu}^{2}(x)$ is written as $xM_{\nu}^{2}(x)=(1/\\sqrt{t})M_{\nu}^{2}(1/\\sqrt{t}))=f_{\nu}(t)$, where $f_{\nu}(t)$ satisfies the differential equation $8t^{3}f_{\nu}'''(t)+36t^{2}f_{\nu}''(t)+\\{(26-8\nu^{2})t+8\\}f_{\nu}'(t)-(4\nu^{2}-1)f_{\nu}(t)=0$. Applying the $\\tau$-method to the above equation, the approximation to $f_{\nu}(t)$ is obtained.","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"1401","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"1394","bibliographicIssueDates":{"bibliographicIssueDate":"2010-08-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"8","bibliographicVolumeNumber":"51"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"created":"2025-01-18T23:29:26.603846+00:00","id":70147,"links":{}}