{"updated":"2025-01-22T00:23:31.613298+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00068037","sets":["1164:2592:5970:6032"]},"path":["6032"],"owner":"10","recid":"68037","title":["<i>k</i>辺連結2部グラフの(<i>k</i> + 1) 辺連結化のための高速アルゴリズム"],"pubdate":{"attribute_name":"公開日","attribute_value":"2010-02-26"},"_buckets":{"deposit":"9facdb4a-c0dc-4ae3-86c7-b305c0bf9a3c"},"_deposit":{"id":"68037","pid":{"type":"depid","value":"68037","revision_id":0},"owners":[10],"status":"published","created_by":10},"item_title":"<i>k</i>辺連結2部グラフの(<i>k</i> + 1) 辺連結化のための高速アルゴリズム","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"<i>k</i>辺連結2部グラフの(<i>k</i> + 1) 辺連結化のための高速アルゴリズム"},{"subitem_title":"A Fast Algorithm for (<i>k</i> + 1)-Edge-Connectivity Augmentation of a <i>k</i>-Edge-Connected Bipartite Graph","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2010-02-26","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"広島大学大学院工学研究科"},{"subitem_text_value":"広島大学大学院工学研究科"},{"subitem_text_value":"広島大学大学院工学研究科"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Engineering, Hiroshima University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Engineering, Hiroshima University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Engineering, Hiroshima University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/68037/files/IPSJ-AL10129007.pdf"},"date":[{"dateType":"Available","dateValue":"2012-02-26"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL10129007.pdf","filesize":[{"value":"189.1 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"57453d90-8eec-484a-b506-7d1e1d4e5932","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2010 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"沖, 忠親"},{"creatorName":"田岡, 智志"},{"creatorName":"渡邉, 敏正"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Tadachika, Oki","creatorNameLang":"en"},{"creatorName":"Satoshi, Taoka","creatorNameLang":"en"},{"creatorName":"Toshimasa, Watanabe","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"2 部グラフの k 辺連結化問題 (以下,UW-Bipartite- (k+1) ECA (*, MA) と略記) は以下のように定義される: 「無向 2 部グラフ G = (V + ∪V-,E) が与えられたとき,辺付加後のグラフ G' = (V + ∪V- ,E∪E') が (k + 1) 辺連結 2 部グラフであるような最小の付加辺集合 E' を求めよ.」本稿では,G が k 辺連結であるときに最適解を算出する高速アルゴリズムを提案し,k ∈ {1, 2} のとき線形時間で解けることを示す.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"The k-edge-connectivity augmentation problem of bipartite graphs (UW-Bipartite-kECA(*, MA) for short) is defined as follows: ”Given an undirected bipartite graph G = (V+ ∪V-,E), find a smallest set E' of edges such that G' = (V+ ∪V-,E∪E') is a k-edge-connected bipartite one.” In this paper we propose a fast algorithm for finding an optimum solution to UW-Bipartite-(k + 1)ECA(*, MA) when G is k-edge-connected with k > 0, and show that it can be solved in linear time for k ∈ {1, 2}.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"8","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2010-02-26","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"7","bibliographicVolumeNumber":"2010-AL-129"}]},"relation_version_is_last":true,"weko_creator_id":"10"},"created":"2025-01-18T23:28:11.152273+00:00","id":68037,"links":{}}