@techreport{oai:ipsj.ixsq.nii.ac.jp:00062298, author = {松山, 匡子 and 駒谷, 和範 and 武田, 龍 and 尾形, 哲也 and 奥乃, 博 and Kyoko, Matsuyama and Kazunori, Komatani and Ryu, Takeda and Tetsuya, Ogata and Hiroshi, G.Okuno}, issue = {14}, month = {May}, note = {自然な会話を実現できる音声対話システムでは,ユーザが自由なタイミングや言語表現で発話できることが望ましい.我々は,ユーザが任意のタイミングでシステム発話に割り込み(バージイン)できる手法を開発している.本手法では,Independent Component Analysis (ICA) に基づくセミブラインド音源分離を利用している.本稿では,システムが列挙する項目に対してユーザがバージイン発話で指定した対象を同定するために,ユーザのバージイン発話から得られるタイミング情報を用いて解釈する新手法について報告する.まず,ユーザが参照表現を用いて発話する場合のタイミング分布を,予備調査の結果に基づき,ガンマ分布で近似する.次に,システムの読み上げる各項目に対して,ユーザ発話がそのタイミングで解釈されるべき場合とその音声認識結果で解釈されるべき場合とをそれぞれ確率として表現する.これら2つの確率を統合し,最も尤度の高い項目をユーザの指示対象と同定する.システムが列挙する項目の一つを指定するユーザのバージイン発話400発話に対して,本手法が2つのベースライン手法(音声認識結果のみから指示対象を同定する手法,及び,ユーザの発話タイミングのみから指示対象を同定する手法) よりも高精度に同定できることを実験により確認した., In conversational dialogue systems, the user prefers to speak at any time and to use natural expressions. We have developed an Independent Component Analysis (ICA) based semiblind source separation method, which allows users to barge-in over system utterances at any time. We create a novel method from timing information derived from barge-in utterances to identify one item that a user indicates during system enumeration. First, we determine the timing distribution of user utterances containing referential expressions and then approximate it using gamma distribution. Second, we represent both the utterance timing and automatic speech recognition (ASR) results as probabilities of the desired selection from the system's enumeration. We then integrate these two probabilities to identify the item having the maximum likelihood of selection. Experimental results using 400 utterances indicated that our method outperformed two methods used as a baseline (one of ASR results only and one of utterance timing only) in identification accuracy.}, title = {バージイン発話タイミングモデルを導入した指示対象同定}, year = {2009} }