@techreport{oai:ipsj.ixsq.nii.ac.jp:00061536, author = {内藤, 英智 and 陳, 斌 and 森, 健策 and 末永, 康仁 and 北坂, 孝幸 and 高畠, 博嗣 and 森, 雅樹 and 名取, 博 and Hideto, Naito and Bin, Chen and Kensaku, Mori and Yasuhito, Suenaga and Takayuki, Kitasaka and Hirotsugu, Takabatake and Masaki, Mori and Hiroshi, Natori}, issue = {29(2009-CVIM-166)}, month = {Mar}, note = {多発性小肺結節の症例では,医師の手による検出及び,経時変化の観察には多大な労力が必要となる.そのため,計算機による半自動化手法が求められている.本稿では,局所濃淡特徴に基づいた 3 次元胸部 X 線 CT 画像からの多発性小肺結節の検出手法及び,結節の重心点間距離,および体積や平均 CT 値等の特徴量変化を用いた結節の同定手法を提案する.胸部 X 線 CT 像 3 症例 14 画像に対して本手法を適用した結果,同定成功率が 83.3% (30 組中 36 組) であった., This paper presents new methods for enabling physicians to easily observe follow-up CT scans. First, we detect nodules from 3D X-ray CT images based on local intensity structure analysis. Next, we co-register follow-up CT scans based on non-rigid registration to find correspondence of nodules automatically detected from all the CT scans. We applied this method to three cases including 14 images of multiple metastasis lung nodules. In this experiment we used the nodules automatically extracted by our method. The rate of assigning correct ID to each nodule turned out to be 83.3% (30/36).}, title = {非剛体レジストレーションを利用した 3 次元胸部 CT 像の位置合わせと多発性小肺結節の経過観察支援への応用}, year = {2009} }