{"created":"2025-01-18T23:21:47.932284+00:00","updated":"2025-01-22T03:48:13.470570+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00058919","sets":["1164:5352:5358:5359"]},"path":["5359"],"owner":"1","recid":"58919","title":["MDS法における最適次元の推定"],"pubdate":{"attribute_name":"公開日","attribute_value":"2007-12-20"},"_buckets":{"deposit":"67b46362-150e-4e4f-a269-a19ee89ce077"},"_deposit":{"id":"58919","pid":{"type":"depid","value":"58919","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"MDS法における最適次元の推定","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"MDS法における最適次元の推定"},{"subitem_title":"An estimation of the optimal dimension in the MDS method","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2007-12-20","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"お茶の水女子大学 理学部 情報科学科"},{"subitem_text_value":"お茶の水女子大学 大学院人間文化創成研究科"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Department of Information Sciences, Ochanomizu University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Humanities and Sciences, Ochanomizu University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/58919/files/IPSJ-BIO07011014.pdf"},"date":[{"dateType":"Available","dateValue":"2009-12-20"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-BIO07011014.pdf","filesize":[{"value":"342.7 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"41"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"cab76ac5-c2fc-482c-a844-5886c6cae333","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2007 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"伊藤里江"},{"creatorName":"吉田, 裕亮"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Rie, Itoh","creatorNameLang":"en"},{"creatorName":"Hiroaki, Yoshida","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12055912","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本研究では多次元尺度法 (MDS:Multi-Dimensional Scaling) において  対象を布置する空間の最適次元を推定する基準を提案する. すなわち  通常 Kruscal のストレス値をもって布置の最適性に用いられることが多いが  これは必ずしも最適な布置空間の次元を求めることはできない. そこで  このストレス値に情報量基準と同様の手法で次元の増大に伴うペナルティを与えることにより  最適な次元を選択する基準を導入する. また MDS 法の応用として鉄道の運賃表から各都市の位置関係の復元を例示する.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"In this study, we introduce a criterion for an estimation of the optimal dimension of the relocation subspace in the Multi-Dimensional Scaling method. Generally, a value of Kruscal's stress can be used as a measure of goodness for an estimation in the MDS method but unfortunately, it does not always lead the optimal dimension well. Thus we shall modify the stressvalue by giving penalty on the increasing of the dimension, which is the same notion as in the information criteria like the AIC. As an application, we also give a reconstruction of the map from the fare table of the railway.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"56","bibliographic_titles":[{"bibliographic_title":"情報処理学会研究報告バイオ情報学(BIO)"}],"bibliographicPageStart":"53","bibliographicIssueDates":{"bibliographicIssueDate":"2007-12-20","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"128(2007-BIO-011)","bibliographicVolumeNumber":"2007"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":58919,"links":{}}