WEKO3
アイテム
単語誤り最小化に基づく識別的リスコアリングによる音声認識
https://ipsj.ixsq.nii.ac.jp/records/56619
https://ipsj.ixsq.nii.ac.jp/records/56619ab68dece-c895-42e4-b543-a37c444d9f88
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2008 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2008-12-02 | |||||||
タイトル | ||||||||
タイトル | 単語誤り最小化に基づく識別的リスコアリングによる音声認識 | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Discriminative Rescoring Based on Minimization of Word Errors for Speech Recognition | |||||||
言語 | ||||||||
言語 | jpn | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
NHK放送技術研究所 | ||||||||
著者所属 | ||||||||
NHK放送技術研究所 | ||||||||
著者所属 | ||||||||
NHK放送技術研究所 | ||||||||
著者所属 | ||||||||
NHK放送技術研究所 | ||||||||
著者所属 | ||||||||
NHK放送技術研究所 | ||||||||
著者所属 | ||||||||
NHK放送技術研究所 | ||||||||
著者所属(英) | ||||||||
en | ||||||||
NHK Science & Technical Research Laboratories | ||||||||
著者所属(英) | ||||||||
en | ||||||||
NHK Science & Technical Research Laboratories | ||||||||
著者所属(英) | ||||||||
en | ||||||||
NHK Science & Technical Research Laboratories | ||||||||
著者所属(英) | ||||||||
en | ||||||||
NHK Science & Technical Research Laboratories | ||||||||
著者所属(英) | ||||||||
en | ||||||||
NHK Science & Technical Research Laboratories | ||||||||
著者所属(英) | ||||||||
en | ||||||||
NHK Science & Technical Research Laboratories | ||||||||
著者名 |
小林, 彰夫
奥, 貴裕
本間真一
佐藤庄衛
今井, 亨
都木徹
× 小林, 彰夫 奥, 貴裕 本間真一 佐藤庄衛 今井, 亨 都木徹
|
|||||||
著者名(英) |
Akio, Kobayashi
Takahiro, Oku
Shinichi, Homma
Shoei, Sato
Toru, Imai
Tohru, Takagi
× Akio, Kobayashi Takahiro, Oku Shinichi, Homma Shoei, Sato Toru, Imai Tohru, Takagi
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | 本報告では,ニュース音声認識における単語誤りの傾向を反映したリスコアリング手法を提案する.提案法では,リスコアリングの際,音声認識の単語仮説の誤り傾向に応じて,仮説にペナルティを与える.単語仮説のペナルティは,言語的な文脈により活性化する素性関数とその重みにより定義される.素性関数の重みを求めるため,単語誤り最小化に基づく学習法を提案し,学習データ中の単語誤りを削減するような目的関数を用いて学習を行う.さらに,ニュース音声認識をターゲットとした時期依存適応学習を導入し,話題の時間的な関連性を用いて認識率の改善を図る.ニュース音声を用いたリスコアリング実験の結果,提案法は単語誤り率 7.4% となり, trigram によるラティスリスコアリングに比べて 6.3% の単語誤り削減率が得られた. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | This paper describes a novel method of rescoring that reflects tendencies of errors in word hypotheses in speech recognition for transcribing broadcast news. The proposed rescoring assigns penalties to sentence hypotheses according to the recognition error tendencies in the training lattices themselves using a set of weighting factors for feature functions activated by a variety of linguistic contexts. We introduced new techniques to obtain the factors and it is based on the minimization of word errors, which explicitly reduces expected word errors. Moreover, we proposed a new time-dependent-adaptive training scheme, which features similarities among temporal correlated articles of broadcast news. The results of transcribing Japanese broadcast news achieved a word error rate (WER) of 7.4%, which was a 6.3% reduction relative to conventional trigram lattice rescoring. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN10442647 | |||||||
書誌情報 |
情報処理学会研究報告音声言語情報処理(SLP) 巻 2008, 号 123(2008-SLP-074), p. 255-260, 発行日 2008-12-02 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |