@techreport{oai:ipsj.ixsq.nii.ac.jp:00055911,
 author = {馬場, 貴之 and 山田, 武志 and 北脇, 信彦 and Takayuki, Baba and TakeshiYamada and NobuhikoKitawaki},
 issue = {82(2005-MUS-061)},
 month = {Aug},
 note = {自動採譜や音楽検索において,楽器音の音源同定は重要な要素技術である.本稿では,単一楽器の孤立発音を対象とした,HMM とMFCC を用いた楽器音の音源同定について述べる.まず,適切なHMM のパラメータを決定するために,RWC の楽器音データベースを用いて同定実験を行った.その結果,HMM の状態数と混合分布数が各々9,12 のときに88.65%の同定率が得られることが分かった.次に,学習データの量が同定率に及ぼす影響を調査し,学習データの量と同定率の関係を明らかにした., Musical instrument identification is one of key technologies for automatic music transcription and music information retrieval. In this paper, we describe musical instrument identification using HMM and MFCC for monophonic sound. First, we conduct an experiment on identification using HMM and MFCC to investigate the proper parameter of HMM. From the result, we obtained the identification rate of 88.65% when a number of states and Gaussian mixtures are 9 and 12, respectively. Second, we examined the effect of an amount of training data on the identification rate and showed the relationship by performing an experiment.},
 title = {HMMとMFCCを用いた楽器音の音源同定の検討},
 year = {2005}
}