ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 自然言語処理(NL)
  3. 2006
  4. 94(2006-NL-175)

Controlling the Penalty on Late Arrival of Relevant Documents in Information Retrieval Evalution with Graded Relevance

https://ipsj.ixsq.nii.ac.jp/records/47896
https://ipsj.ixsq.nii.ac.jp/records/47896
09ee737c-f491-484f-8c6c-ec8fc468201f
名前 / ファイル ライセンス アクション
IPSJ-NL06175009.pdf IPSJ-NL06175009.pdf (1.3 MB)
Copyright (c) 2006 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2006-09-12
タイトル
タイトル Controlling the Penalty on Late Arrival of Relevant Documents in Information Retrieval Evalution with Graded Relevance
タイトル
言語 en
タイトル Controlling the Penalty on Late Arrival of Relevant Documents in Information Retrieval Evalution with Graded Relevance
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Knowledge Media Laboratory Toshiba Corporate R&D center
著者所属(英)
en
Knowledge Media Laboratory, Toshiba Corporate R&D center
著者名 Tetsuya, Sakai

× Tetsuya, Sakai

Tetsuya, Sakai

Search repository
著者名(英) Tetsuya, Sakai

× Tetsuya, Sakai

en Tetsuya, Sakai

Search repository
論文抄録
内容記述タイプ Other
内容記述 Large-scale information retrieval evalution efforts such as TREC and NTCIR have always used binary-relevance evalution metrics even when graded relevance data were available. However the NTCIR-6 crosslingual task has finally announced that it will use graded-relevance metrics though only as additional metrics. This paper compares graded-relevance metrics in terms of the ability to control the balance between retrieving highly relevant documents and retrieving any relevant documents early in the ranked list. We argue and demonstrate that Q-measure is more flexible than normalised Discounted Cumulative Gain and generalised Average Precision. We then suggest a brief guideline for conducting a reliable information retrieval evalution with graded relevance.
論文抄録(英)
内容記述タイプ Other
内容記述 Large-scale information retrieval evalution efforts such as TREC and NTCIR have always used binary-relevance evalution metrics, even when graded relevance data were available. However, the NTCIR-6 crosslingual task has finally announced that it will use graded-relevance metrics, though only as additional metrics. This paper compares graded-relevance metrics in terms of the ability to control the balance between retrieving highly relevant documents and retrieving any relevant documents early in the ranked list. We argue and demonstrate that Q-measure is more flexible than normalised Discounted Cumulative Gain and generalised Average Precision. We then suggest a brief guideline for conducting a reliable information retrieval evalution with graded relevance.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10115061
書誌情報 情報処理学会研究報告自然言語処理(NL)

巻 2006, 号 94(2006-NL-175), p. 57-64, 発行日 2006-09-12
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-22 08:46:28.653188
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3