ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. オーディオビジュアル複合情報処理(AVM)
  3. 2005
  4. 124(2005-AVM-051)

Facial Expression Recognition by Supervised ICA with Selective Prior

https://ipsj.ixsq.nii.ac.jp/records/41153
https://ipsj.ixsq.nii.ac.jp/records/41153
8bae24cf-9bf7-407b-b313-6510095f115d
名前 / ファイル ライセンス アクション
IPSJ-AVM05051006.pdf IPSJ-AVM05051006.pdf (769.1 kB)
Copyright (c) 2005 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2005-12-12
タイトル
タイトル Facial Expression Recognition by Supervised ICA with Selective Prior
タイトル
言語 en
タイトル Facial Expression Recognition by Supervised ICA with Selective Prior
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
School of Information Science Japan Advanced Institute of Science and Technology
著者所属
School of Information Science Japan Advanced Institute of Science and Technology
著者所属(英)
en
School of Information Science, Japan Advanced Institute of Science and Technology
著者所属(英)
en
School of Information Science, Japan Advanced Institute of Science and Technology
著者名 Fan, Chen Kazunori, Kotani

× Fan, Chen Kazunori, Kotani

Fan, Chen
Kazunori, Kotani

Search repository
著者名(英) Fan, Chen KazunoriKotani

× Fan, Chen KazunoriKotani

en Fan, Chen
KazunoriKotani

Search repository
論文抄録
内容記述タイプ Other
内容記述 Feature selection is required when using the Independent Component Analysis (ICA) in feature extraction for pattern classification. Selection during ICA might provide a better candidate set of features. We propose a supervised ICA with a selective prior for the de-mixing coefficients so that those features with higher significance in discrimination could emerge easier during the learning. We formulate the learning rule for the supervised ICA in a form of the natural gradient approach and develop the algorithm of supervised ICA in facial expression analysis. The efficiency of the proposed algorithm has been investigated by numerical experiments.
論文抄録(英)
内容記述タイプ Other
内容記述 Feature selection is required when using the Independent Component Analysis (ICA) in feature extraction for pattern classification. Selection during ICA might provide a better candidate set of features. We propose a supervised ICA with a selective prior for the de-mixing coefficients so that those features with higher significance in discrimination could emerge easier during the learning. We formulate the learning rule for the supervised ICA in a form of the natural gradient approach and develop the algorithm of supervised ICA in facial expression analysis. The efficiency of the proposed algorithm has been investigated by numerical experiments.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438399
書誌情報 情報処理学会研究報告オーディオビジュアル複合情報処理(AVM)

巻 2005, 号 124(2005-AVM-051), p. 27-32, 発行日 2005-12-12
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-22 12:04:44.497713
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3