@techreport{oai:ipsj.ixsq.nii.ac.jp:00038371, author = {海野, 啓明 and 矢島, 邦昭 and 佐藤, 大輔 and Keimei, Kaino and Kuniaki, Yajima and Daisuke, Sato}, issue = {89(2001-CG-104)}, month = {Sep}, note = {普通の折り紙を3次元折り紙とすると,4次元折り紙は立体を4次元空間で折ることになる.4次元空間における物体のイメージを得るには,4次元折り紙を折り,その過程を表現することが良い.既に折られたものとして4次元熨斗や4次元鶴の基本形がある.本論では,4次元折り紙の幾何学の基本の「4面体の内心の定理」を4面体の折りたたみにより動画で説明する.4次元折り鶴は正8面体から,3次元折り鶴と同様の過程を経て折る.まず,正8面体から4次元鶴の基本形を折り,次に基本形から4次元折り鶴を折る.これらの過程を動画で表現することで4次元空間についてある程度のイメージを得ることができる., By pure analogy of a usual three-dimensional Origami, we can fold a solid material along flat surfaces in the four-dimensional space. We will show a procedure to fold a tetrahedron along bisectors of the dihedral angles and its animation which demonstrates that the point of intersection of those bisectors is the center of the circle. Consistently joining such folded tetrahedra which construct the regular octahedron, we will obtain a four-dimensional bird base. Animation of the proceture of folding the four-dimensional crane from the regular octahedron will give us a good understanding of the four-dimensional space.}, title = {4次元折り紙とそのCG表現}, year = {2001} }