{"created":"2025-01-18T23:05:44.821403+00:00","updated":"2025-01-22T13:31:44.347650+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00038050","sets":["1164:3206:3217:3218"]},"path":["3218"],"owner":"1","recid":"38050","title":["美的曲線の有理3次Bezier近似"],"pubdate":{"attribute_name":"公開日","attribute_value":"2006-11-16"},"_buckets":{"deposit":"ca7ababd-d422-47e5-86e5-115a66fec547"},"_deposit":{"id":"38050","pid":{"type":"depid","value":"38050","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"美的曲線の有理3次Bezier近似","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"美的曲線の有理3次Bezier近似"},{"subitem_title":"Approximation of an Aesthetic Curve Segment by a Rational Cubic Bezier Curve Segment","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2006-11-16","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"日本大学"},{"subitem_text_value":"東京農工大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Nihon University","subitem_text_language":"en"},{"subitem_text_value":"Tokyo University of Agriculture and Technology","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/38050/files/IPSJ-CG06125005.pdf"},"date":[{"dateType":"Available","dateValue":"2008-11-16"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-CG06125005.pdf","filesize":[{"value":"682.5 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"28"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"1b427d3f-ac31-4dff-bdf5-857c6eb09c71","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2006 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"吉田, 典正"},{"creatorName":"斎藤, 隆文"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Norimasa, YOSHIDA","creatorNameLang":"en"},{"creatorName":"Takafumi, SAITO","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10100541","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"美的曲線は、曲率変化の単調な美しい曲線であるが、積分形式で表されるため従来のCADシステムとの互換性を持たず、特別な形式で表現しなければならない。本報告では、一つの美的曲線セグメントを、曲率の単調整を保証した一つの有理3次Bezier曲線に近似する手法を提案する。曲率の単調整を保証するために、有理3次Bezier曲線の曲率の単調整を確認する手法についても述べる。また、提案手法を実装し、種々の美的曲線セグメントに適用したところ、方向角の変化が90度以内の場合に、一つの美的曲線セグメントを曲率の単調整を保ちながら一つの有理3次Bezier曲線セグメントに近似できることを確認した。","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"An aesthetic curve is a curve of monotone curvature represented by the quadrature form. An aeshtetic curve in its quadrature form is not compatible with current CAD systems. In this paper, we present a method that approximates one aesthetic curve segment by one rational cubic Bezier curve segment. We also present a method for checking the monotonicity of a rational cubic Bezier curve segment. We have implemented our algorithm and verified that one aesthetic curve segment can be approximated by one rational cubic Bezier curve segment when the change of tangential angle is less than 90 deg.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"30","bibliographic_titles":[{"bibliographic_title":"情報処理学会研究報告グラフィクスとCAD(CG)"}],"bibliographicPageStart":"25","bibliographicIssueDates":{"bibliographicIssueDate":"2006-11-16","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"119(2006-CG-125)","bibliographicVolumeNumber":"2006"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":38050,"links":{}}