{"created":"2025-01-18T23:02:25.795628+00:00","updated":"2025-01-22T15:36:09.972530+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00033641","sets":["1164:2735:2796:2797"]},"path":["2797"],"owner":"1","recid":"33641","title":["多次元分布の線形変換による圧縮表現のタンパク質立体構造認識問題への応用"],"pubdate":{"attribute_name":"公開日","attribute_value":"1998-11-26"},"_buckets":{"deposit":"ae319fc8-1ab6-4e73-99ea-353b6035cffd"},"_deposit":{"id":"33641","pid":{"type":"depid","value":"33641","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"多次元分布の線形変換による圧縮表現のタンパク質立体構造認識問題への応用","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"多次元分布の線形変換による圧縮表現のタンパク質立体構造認識問題への応用"},{"subitem_title":"A compressed representation of multiple - dimensional distribution by linear base transformation, and its application to protein 3D structure recognition","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"1998-11-26","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"新情報処理開発機構"},{"subitem_text_value":"新情報処理開発機構"},{"subitem_text_value":"新情報処理開発機構"},{"subitem_text_value":"新情報処理開発機構"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Real World Computing Partnership","subitem_text_language":"en"},{"subitem_text_value":"Real World Computing Partnership","subitem_text_language":"en"},{"subitem_text_value":"Real World Computing Partnership","subitem_text_language":"en"},{"subitem_text_value":"Real World Computing Partnership","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/33641/files/IPSJ-MPS98022013.pdf"},"date":[{"dateType":"Available","dateValue":"2000-11-26"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-MPS98022013.pdf","filesize":[{"value":"733.4 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"17"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"5e093767-888f-43f1-b3bc-0a9659e7b717","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1998 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"鬼塚健太郎"},{"creatorName":"野口, 保"},{"creatorName":"安藤, 誠"},{"creatorName":"秋山, 泰"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Kentaro, Onizuka","creatorNameLang":"en"},{"creatorName":"Tamotsu, Noguchi","creatorNameLang":"en"},{"creatorName":"Makoto, Ando","creatorNameLang":"en"},{"creatorName":"Yutaka, Akiyama","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10505667","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"多次元分布は,その分布を線形基底を用いて基底変換し,その基底の次数打ち切りを行なうことで,少ないパラメータで表現することができる.この方法を,同一タンパク質中に含まれるアミノ酸残基の対の相対位置分布に適応し,タンパク質の縫糸法による自己構造認識問題に応用した.アミノ酸残基間距離だけを用いた一自由度の場合,相対位置だけを考慮した三自由度の場合,および相対姿勢も考慮した六自由度の場合それぞれについて,タンパク質の残基配列が自分自身の構造を認識する正解率を求め(自己認識率),従来の相対距離にのみ着目した一自由度の統計を用いた場合よりも,多自由度,での統計を用いた方法のほうが,自己認識率が高いことが判明した.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Multiple dimensional distribution is represented with fewer number of parameters by linearly expanding the distribution and controlling the cut-off orders of expansion. We adopted this method to the distribution of the relative position between two amino-residues in a protein chain, and applied it to the protein fold recognition problem. We compared the recognition ratio of three cases, adopting the distribution 1) with respect to the distance (one degree of freedom), 2) with respect to the 3D position (three degrees of freedom), and 3) with respect to the 3D position and the relative orientation (six degrees of freedom). The result is that the self-recognition ratio of multiple dimensional distribution is better than that of the conventional distribution with respect only to the relative distance.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"80","bibliographic_titles":[{"bibliographic_title":"情報処理学会研究報告数理モデル化と問題解決(MPS)"}],"bibliographicPageStart":"75","bibliographicIssueDates":{"bibliographicIssueDate":"1998-11-26","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"105(1998-MPS-022)","bibliographicVolumeNumber":"1998"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":33641,"links":{}}