{"created":"2025-01-18T23:01:42.583682+00:00","updated":"2025-01-22T16:04:04.180352+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00032676","sets":["1164:2592:2721:2722"]},"path":["2722"],"owner":"1","recid":"32676","title":["Monotone Polygon Containment Problems Under Translation"],"pubdate":{"attribute_name":"公開日","attribute_value":"1989-11-20"},"_buckets":{"deposit":"5cf1f602-3d1b-40ac-97e7-26e0720d78d3"},"_deposit":{"id":"32676","pid":{"type":"depid","value":"32676","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"Monotone Polygon Containment Problems Under Translation","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Monotone Polygon Containment Problems Under Translation"},{"subitem_title":"Monotone Polygon Containment Problems Under Translation","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"1989-11-20","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Institute of Computer Science National Tsing Hua University"},{"subitem_text_value":"Institute of Computer Science National Tsing Hua University"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Institute of Computer Science National Tsing Hua University","subitem_text_language":"en"},{"subitem_text_value":"Institute of Computer Science National Tsing Hua University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/32676/files/IPSJ-AL89012018.pdf"},"date":[{"dateType":"Available","dateValue":"1991-11-20"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL89012018.pdf","filesize":[{"value":"1.0 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"ad37c9bb-8b0a-4c8a-85ef-0100d7bd3be6","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1989 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Jui-ShangChiu"},{"creatorName":"Jia-ShungWang"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Jui-Shang, Chiu","creatorNameLang":"en"},{"creatorName":"Jia-Shung, Wang","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"We investigate the problem of determining whether a polygon I can be translated to fit inside another polygon E without constructing the whole boundary of the feasible region. In the case of rectilinearly 2-concave polygons  an O(mn log^2 mn) algorithm is presented where m is the number of edges of I and n is the number of edges of E. Since the feasible region may have O(m^2n^2) edges  this algorithm is more efficiently to solve the problem. Also  an O(mn log m) algorithm is presented to solve the case of monotone polygons.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"We investigate the problem of determining whether a polygon I can be translated to fit inside another polygon E without constructing the whole boundary of the feasible region. In the case of rectilinearly 2-concave polygons, an O(mn log^2 mn) algorithm is presented where m is the number of edges of I and n is the number of edges of E. Since the feasible region may have O(m^2n^2) edges, this algorithm is more efficiently to solve the problem. Also, an O(mn log m) algorithm is presented to solve the case of monotone polygons.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"130","bibliographic_titles":[{"bibliographic_title":"情報処理学会研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"123","bibliographicIssueDates":{"bibliographicIssueDate":"1989-11-20","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"98(1989-AL-012)","bibliographicVolumeNumber":"1989"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":32676,"links":{}}