WEKO3
アイテム
Monotone Polygon Containment Problems Under Translation
https://ipsj.ixsq.nii.ac.jp/records/32676
https://ipsj.ixsq.nii.ac.jp/records/3267692b774c8-7dd2-4af6-9ef6-62bddf7c4d61
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 1989 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | SIG Technical Reports(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 1989-11-20 | |||||||
タイトル | ||||||||
タイトル | Monotone Polygon Containment Problems Under Translation | |||||||
タイトル | ||||||||
言語 | en | |||||||
タイトル | Monotone Polygon Containment Problems Under Translation | |||||||
言語 | ||||||||
言語 | jpn | |||||||
資源タイプ | ||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||
資源タイプ | technical report | |||||||
著者所属 | ||||||||
Institute of Computer Science National Tsing Hua University | ||||||||
著者所属 | ||||||||
Institute of Computer Science National Tsing Hua University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Institute of Computer Science National Tsing Hua University | ||||||||
著者所属(英) | ||||||||
en | ||||||||
Institute of Computer Science National Tsing Hua University | ||||||||
著者名 |
Jui-ShangChiu
Jia-ShungWang
× Jui-ShangChiu Jia-ShungWang
|
|||||||
著者名(英) |
Jui-Shang, Chiu
Jia-Shung, Wang
× Jui-Shang, Chiu Jia-Shung, Wang
|
|||||||
論文抄録 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We investigate the problem of determining whether a polygon I can be translated to fit inside another polygon E without constructing the whole boundary of the feasible region. In the case of rectilinearly 2-concave polygons an O(mn log^2 mn) algorithm is presented where m is the number of edges of I and n is the number of edges of E. Since the feasible region may have O(m^2n^2) edges this algorithm is more efficiently to solve the problem. Also an O(mn log m) algorithm is presented to solve the case of monotone polygons. | |||||||
論文抄録(英) | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | We investigate the problem of determining whether a polygon I can be translated to fit inside another polygon E without constructing the whole boundary of the feasible region. In the case of rectilinearly 2-concave polygons, an O(mn log^2 mn) algorithm is presented where m is the number of edges of I and n is the number of edges of E. Since the feasible region may have O(m^2n^2) edges, this algorithm is more efficiently to solve the problem. Also, an O(mn log m) algorithm is presented to solve the case of monotone polygons. | |||||||
書誌レコードID | ||||||||
収録物識別子タイプ | NCID | |||||||
収録物識別子 | AN1009593X | |||||||
書誌情報 |
情報処理学会研究報告アルゴリズム(AL) 巻 1989, 号 98(1989-AL-012), p. 123-130, 発行日 1989-11-20 |
|||||||
Notice | ||||||||
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. | ||||||||
出版者 | ||||||||
言語 | ja | |||||||
出版者 | 情報処理学会 |