{"id":32648,"updated":"2025-01-22T16:04:58.761309+00:00","links":{},"created":"2025-01-18T23:01:41.294293+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00032648","sets":["1164:2592:2714:2718"]},"path":["2718"],"owner":"1","recid":"32648","title":["Euclid距離による多角形配置問題とそれに関連する動的Voronoi図について"],"pubdate":{"attribute_name":"公開日","attribute_value":"1990-05-17"},"_buckets":{"deposit":"2aa464b2-cfeb-486c-8343-ae1929c378b0"},"_deposit":{"id":"32648","pid":{"type":"depid","value":"32648","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"Euclid距離による多角形配置問題とそれに関連する動的Voronoi図について","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Euclid距離による多角形配置問題とそれに関連する動的Voronoi図について"},{"subitem_title":"Euclidean Maximin Location of Convex Objects in a Polygon and Related Dynamic Voronoi Diagrams","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"1990-05-17","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"九州工業大学・情報科学センター"},{"subitem_text_value":"日本IBM東京基礎研究所"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Information Science Center, Kyushu Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"IBM Research, Tokyo Research Laboratory","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/32648/files/IPSJ-AL90015004.pdf"},"date":[{"dateType":"Available","dateValue":"1992-05-17"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL90015004.pdf","filesize":[{"value":"1.1 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"cb9e9918-2a40-4955-b484-35f0c7af2d5a","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 1990 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"今井, 桂子"},{"creatorName":"徳山, 豪"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Keiko, Imai","creatorNameLang":"en"},{"creatorName":"Takeshi, Tokuyama","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本論文では,与えられた凸多角形Pを他の多角形Qの内部に最適に,すなわち,PとQの相対Euclid距離が最小になるように配置する問題を考える。P?Euclid Voronoi図と呼ばれる新しいVoronoi図を定義し,その動的な変化を考える事により,種々の問題に効率の良い算法が得られる。特に,Pがm角形,Qがn角形のときに,Pを回転と平行移動で動かす時,O(^4nλ_<16>()log )時間で最適配置が求まる。ここでλ_<16>()は,N文字の16次Davenport?Shinzel列の長さで,ほとんど線形な関数である。更に,Pがk個の連結成分を持ち,平行移動する場合も取り扱う。","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"This paper considers the maximin placement of a convex polygon P inside a polygon Q, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that P can be placed inside Q, using translation and rotation, so that the minimum Euclidean distance between any point on P and any point on Q is maximized in O(m^4nλ_<16>(mn)log mn) time, where m and n are the numbers of edges of P and Q, respectively, and λ_<16>(N) is the maximum length of Davenport-Schinzel sequences on N alphabets of order 16. The problem of placing multiple translates of P inside Q in a maximin manner is also considered, an in connection with this problem the dynamic Voronoi diagram of k rigidly moving sets of n points is investigated.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"8","bibliographic_titles":[{"bibliographic_title":"情報処理学会研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"1990-05-17","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"37(1990-AL-015)","bibliographicVolumeNumber":"1990"}]},"relation_version_is_last":true,"weko_creator_id":"1"}}