@techreport{oai:ipsj.ixsq.nii.ac.jp:00032648,
 author = {今井, 桂子 and 徳山, 豪 and Keiko, Imai and Takeshi, Tokuyama},
 issue = {37(1990-AL-015)},
 month = {May},
 note = {本論文では,与えられた凸多角形Pを他の多角形Qの内部に最適に,すなわち,PとQの相対Euclid距離が最小になるように配置する問題を考える。P?Euclid Voronoi図と呼ばれる新しいVoronoi図を定義し,その動的な変化を考える事により,種々の問題に効率の良い算法が得られる。特に,Pがm角形,Qがn角形のときに,Pを回転と平行移動で動かす時,O(^4nλ_<16>()log )時間で最適配置が求まる。ここでλ_<16>()は,N文字の16次Davenport?Shinzel列の長さで,ほとんど線形な関数である。更に,Pがk個の連結成分を持ち,平行移動する場合も取り扱う。, This paper considers the maximin placement of a convex polygon P inside a polygon Q, and introduce several new static and dynamic Voronoi diagrams to solve the problem. It is shown that P can be placed inside Q, using translation and rotation, so that the minimum Euclidean distance between any point on P and any point on Q is maximized in O(m^4nλ_<16>(mn)log mn) time, where m and n are the numbers of edges of P and Q, respectively, and λ_<16>(N) is the maximum length of Davenport-Schinzel sequences on N alphabets of order 16. The problem of placing multiple translates of P inside Q in a maximin manner is also considered, an in connection with this problem the dynamic Voronoi diagram of k rigidly moving sets of n points is investigated.},
 title = {Euclid距離による多角形配置問題とそれに関連する動的Voronoi図について},
 year = {1990}
}