@techreport{oai:ipsj.ixsq.nii.ac.jp:00032310, author = {間島, 利也 and 渡邉, 敏正 and Toshiya, Mashima and Toshimasa, Watanabe}, issue = {9(1995-AL-049)}, month = {Jan}, note = {指定点3点連結化問題(VCA?S)とは,無向グラフG=(,)と指定点集合S⊆Vが与えられたときに,Gに辺を付加することにより,どの2点を除去してもSの全ての点が1つの連結成分に含まれるようなグラフとなる最小の付加辺集合を求める問題である.本稿では,Gが2点連結である場合の3VCA?SVに対する線形時間アルゴリズムを示す., The 3-Vertex-Connectivity Augmentation problem for Specified set of Vertices (3VCA-SV) is defined as follows: Given an undirected graph G = (V,E) and a specified set of vertices S⊆V, find a smallest set of edges to be added to G so that the resulting graph may have the property that, even after deleting any two vertices from it, all vertices in S are contained in one connected component. This paper proposes a linear time algorithm for solving 3VCA-SV where G is 2-vertex-connected.}, title = {グラフの指定点3点連結化問題に対する解法}, year = {1996} }