@techreport{oai:ipsj.ixsq.nii.ac.jp:00032174, author = {磯辺, 秀司 and 周暁 and 西関, 隆夫 and Isobe, Shuji and Zhou, Xiao and Takao, Nishizeki}, issue = {62(1998-AL-063)}, month = {Jul}, note = {グラフGの全彩色とはGの全ての点と辺をどの隣接する2点,どの隣接する2辺,どの1点とそれに接続する辺も全て異なる色になるように彩色することである.様々な問題が部分k?木に対して効率良く解けるが,与えられた部分k?木の,最小色数を用いた全彩色を求める多項式時間アルゴリズムはまだ知られていなかった.本文ではそのような最初のアルゴリズムを与える., A total coloring of a graph G is a coloring of all elements of G, i.e. Vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Many combinatorial problems can be efficiently solved for partial k-trees (graphs of treewidth bounded by a constant k). However, no polynomial-time algorithm has been known for the problem of finding a total coloring of a given partial k-tree with the minimum number of colors. This paper gives such a first polynomial-time algorithm.}, title = {部分k?木の全彩色を求める多項式時間アルゴリズム}, year = {1998} }