@techreport{oai:ipsj.ixsq.nii.ac.jp:00032081,
 author = {八登, 崇之 and Takayuki, Yato},
 issue = {84(2000-AL-074)},
 month = {Sep},
 note = {現在多くの人に遊ばれているゲームやパズルの多くについて,その計算量が解析されている.本稿では,パズルの一種であるスリザーリンクについて,解があるかを判定する問題のNP完全性を制限されたハミルトン閉路問題からの多項式時間還元を用いて証明する.また,スリザーリンクの別解問題(Another Solution Problem,1つ解が与えられた時に他に解があるかを判定する問題)について考察し,そのNP完全性の証明の指針を示す., For many of the widely played games and puzzles, their computational complexities have been analyzed. In this paper, we consider a sort of puzzle "Slither Link" and prove that the problem which determines whether or not a given instance of puzzle has any solutions is NP-complete, by using a polynomial time reduction from the Hamilton Path Problem with respect to restricted graphs. In addition we consider Another Solution Problem for the puzzle, the problem which determines, for a given instance and its solution, whether there is another solution for the instance. We provide a strategy to prove its NP-completeness.},
 title = {スリザーリンクのNP完全性について},
 year = {2000}
}