{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00031638","sets":["1164:2592:2600:2601"]},"path":["2601"],"owner":"1","recid":"31638","title":["有向グラフ上の辺素な内向木に関する最大最小定理"],"pubdate":{"attribute_name":"公開日","attribute_value":"2007-11-30"},"_buckets":{"deposit":"989769be-a014-4e37-aaf5-513917051feb"},"_deposit":{"id":"31638","pid":{"type":"depid","value":"31638","revision_id":0},"owners":[1],"status":"published","created_by":1},"item_title":"有向グラフ上の辺素な内向木に関する最大最小定理","author_link":["0","0"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"有向グラフ上の辺素な内向木に関する最大最小定理"},{"subitem_title":"Arc-disjoint In-trees in Directed Graphs","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2007-11-30","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"京都大学院工学研究科建築学専攻"},{"subitem_text_value":"京都大学院工学研究科建築学専攻"},{"subitem_text_value":"京都大学院工学研究科建築学専攻"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Department of Architecture and Architectural Engineering, Kyoto University","subitem_text_language":"en"},{"subitem_text_value":"Department of Architecture and Architectural Engineering, Kyoto University","subitem_text_language":"en"},{"subitem_text_value":"Department of Architecture and Architectural Engineering, Kyoto University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/31638/files/IPSJ-AL07115001.pdf"},"date":[{"dateType":"Available","dateValue":"2009-11-30"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL07115001.pdf","filesize":[{"value":"608.3 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"69b12e2f-8382-429c-9dc0-96dc39531c27","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2007 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"神山, 直之"},{"creatorName":"加藤, 直樹"},{"creatorName":"瀧澤, 重志"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Naoyuki, Kamiyama","creatorNameLang":"en"},{"creatorName":"Naoki, Katoh","creatorNameLang":"en"},{"creatorName":"Atsushi, Takizawa","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"本論文では,|S|=dを満たす特別な点集合S={S1 ... Sd.}⊆Vを持つ有向グラフD=(V A) と関数 f:S→Nが与えられたとき,各 Ti j が si を根とし,si に到達可能なVの点集合を張るような,全てのi=1 ... dに対して、Ti 1 Ti 2... Ti f(si)と表される辺素な内向木の集合が存在する必要十分条件を与える.ただし,Nは自然数の集合であるとする.この定理は,[2]によって与えられた定理,つまり特別な点S∈Vを持つ有向木D=(V A)と自然数K∈Nが与えられたとき,虎個の辺素なVを張るsを根とする内向木が存在する必要十分条件の一般化となっている.さらに本論文では,[1]によって与えられた内向木のパッキングに関する別の特徴付けを,我々の場合へ拡張する.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Given a directed graph D = (V,A) and a set of specified vertices S = {s1..., sd} ⊆ V with |S| = d and a function f:S 窶髏 N where N denotes the set of natural numbers, we present a necessary and sufficient condition that there exist Σsi∈s f(si) arc-disjoint in-trees denoted by Ti,1,Ti,2,....,Ti,f(si) for every i = 1,..., d such that Ti,1,..., Ti,f(si) are rooted at Si and each Ti,j spans vertices from which si is reachable. This generalizes the result of Edmonds [2], i.e., the necessary and sufficient condition that for a directed graph D = (V, A) with a specified vertex s ∈ V, there are k arc-disjoint in-trees rooted at s each of which spans V. Furthermore, we extend another characterization of packing in-trees of Edmonds [1] to the one in our case. ","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"8","bibliographic_titles":[{"bibliographic_title":"情報処理学会研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2007-11-30","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"119(2007-AL-115)","bibliographicVolumeNumber":"2007"}]},"relation_version_is_last":true,"weko_creator_id":"1"},"id":31638,"updated":"2025-01-22T16:33:10.881098+00:00","links":{},"created":"2025-01-18T23:00:55.600056+00:00"}