@techreport{oai:ipsj.ixsq.nii.ac.jp:00024234, author = {清木, 泰 and 福重, 俊幸 and 泰地, 真弘人 and 牧野, 淳一郎 and 小河正基 and 戎崎俊一 and Yasushi, Seiki and Toshiyuki, Fukushige and Makoto, Taiji and Junichiro, Makino and Masaki, Ogawa and Toshikazu, Ebisuzaki}, issue = {29(1994-ARC-111)}, month = {Mar}, note = {係数行列が密であるn元連立一次方程式を高速に解くための専用計算機について述べる。密行列を解く際にはガウスの消去法が通常使われる。ガウスの消去法の演算量は、行列の大きさnの3乗に比例する。そのため、大規模密行列を解くためには、高い計算能力が要求される。ガウスの消去法において、n^3のオーダーの演算量を要するのは前進消去の制限三項演算または内積演算のみである。本論文では、この内積演算のみを専用計算横で解き、残りの演算を既存の汎用機で行なうシステムについて論ずる。現在、この密行列専用計算機の試作機GENERAL-1を製作中である。GENERAL-1のピーク性能は80Mflops(倍精度計算時)であり、n=1000の連立1次方程式を約20秒で解ける。, We describe a special-purpose computer for solving a set of linear equations. We usually use Gaussian elimination algorithm to solve a dense matrix. In this method the number of operations to solve the matrix is proportional to a cube of the matrix size. Therefore, we require a large amount of computational power for large-scale problems. However, the calculations are dominated by sum-of-products operations in the forward eliminations. In the paper, we propose a system the consists of a special-purpose computer and a host computer. The special-purpose computer does only sum-of-products operations, and the host computer does all the other operations. We are developing an experimental machine of GENERAL-1 (Gaussian ElimiNation mEthod paRALlel machine). It will have a peak performance of 80Mflops and will solve a matrix of n=1000 in 20 seconds.}, title = {密行列専用計算機GENERAL - 1の開発}, year = {1995} }