ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2025
  4. 2025-CVIM-240

任意ランドマーク推定を用いたX線画像と3次元CTの位置合わせ手法

https://ipsj.ixsq.nii.ac.jp/records/242254
https://ipsj.ixsq.nii.ac.jp/records/242254
83fa8b53-6a8f-46fe-ae78-e534517765e8
名前 / ファイル ライセンス アクション
IPSJ-CVIM25240028.pdf IPSJ-CVIM25240028.pdf (3.2 MB)
 2027年1月14日からダウンロード可能です。
Copyright (c) 2025 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2025-01-14
タイトル
タイトル 任意ランドマーク推定を用いたX線画像と3次元CTの位置合わせ手法
タイトル
言語 en
タイトル Registration of X-Ray Image and 3D CT Using Arbitrary Landmark Detection
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
筑波大学
著者所属
筑波大学
著者所属
東京医科大学
著者所属
筑波大学
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
Tokyo Medical University
著者所属(英)
en
University of Tsukuba
著者名 セレスタ, プラギャン

× セレスタ, プラギャン

セレスタ, プラギャン

Search repository
謝, 淳

× 謝, 淳

謝, 淳

Search repository
吉井, 雄一

× 吉井, 雄一

吉井, 雄一

Search repository
北原, 格

× 北原, 格

北原, 格

Search repository
著者名(英) Pragyan, Shrestha

× Pragyan, Shrestha

en Pragyan, Shrestha

Search repository
Chun, Xie

× Chun, Xie

en Chun, Xie

Search repository
Yuichi, Yoshii

× Yuichi, Yoshii

en Yuichi, Yoshii

Search repository
Itaru, Kitahara

× Itaru, Kitahara

en Itaru, Kitahara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Intra-operative 2D-3D registration of X-ray images with pre-operatively acquired CT scans is a crucial procedure in orthopedic surgeries. Anatomical landmarks pre-annotated in the CT volume can be detected in X-ray images to establish 2D-3D correspondences, which are then utilized for registration. However, registration often fails in certain view angles due to poor landmark visibility. We propose a novel method to address this issue by detecting arbitrary landmark points in X-ray images. Our approach represents 3D points as distinct subspaces, formed by feature vectors (referred to as ray embeddings) corresponding to intersecting rays. Establishing 2D-3D correspondences then becomes a task of finding ray embeddings that are close to a given subspace, essentially performing an intersection test. Unlike conventional methods for landmark estimation, our approach eliminates the need for manually annotating fixed landmarks. We trained our model using the synthetic images generated from CTPelvic1K CLINIC dataset, which contains 103 CT volumes, and evaluated it on the DeepFluoro dataset, comprising real X-ray images. Experimental results demonstrate the superiority of our method over conventional methods.
論文抄録(英)
内容記述タイプ Other
内容記述 Intra-operative 2D-3D registration of X-ray images with pre-operatively acquired CT scans is a crucial procedure in orthopedic surgeries. Anatomical landmarks pre-annotated in the CT volume can be detected in X-ray images to establish 2D-3D correspondences, which are then utilized for registration. However, registration often fails in certain view angles due to poor landmark visibility. We propose a novel method to address this issue by detecting arbitrary landmark points in X-ray images. Our approach represents 3D points as distinct subspaces, formed by feature vectors (referred to as ray embeddings) corresponding to intersecting rays. Establishing 2D-3D correspondences then becomes a task of finding ray embeddings that are close to a given subspace, essentially performing an intersection test. Unlike conventional methods for landmark estimation, our approach eliminates the need for manually annotating fixed landmarks. We trained our model using the synthetic images generated from CTPelvic1K CLINIC dataset, which contains 103 CT volumes, and evaluated it on the DeepFluoro dataset, comprising real X-ray images. Experimental results demonstrate the superiority of our method over conventional methods.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2025-CVIM-240, 号 28, p. 1-7, 発行日 2025-01-14
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:23:04.076350
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3