ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2025
  4. 2025-CVIM-240

Multi-scan Partitioning Visual Mamba for Breast Cancer Segmentation

https://ipsj.ixsq.nii.ac.jp/records/242227
https://ipsj.ixsq.nii.ac.jp/records/242227
31afda42-ddf9-4755-a03b-2570676cfbec
名前 / ファイル ライセンス アクション
IPSJ-CVIM25240001.pdf IPSJ-CVIM25240001.pdf (1.5 MB)
 2027年1月14日からダウンロード可能です。
Copyright (c) 2025 by the Information Processing Society of Japan
非会員:¥660, IPSJ:学会員:¥330, CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2025-01-14
タイトル
タイトル Multi-scan Partitioning Visual Mamba for Breast Cancer Segmentation
タイトル
言語 en
タイトル Multi-scan Partitioning Visual Mamba for Breast Cancer Segmentation
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Waseda University
著者所属
Waseda University
著者所属(英)
en
Waseda University
著者所属(英)
en
Waseda University
著者名 Fengze, Li

× Fengze, Li

Fengze, Li

Search repository
Seiichiro, Kamata

× Seiichiro, Kamata

Seiichiro, Kamata

Search repository
著者名(英) Fengze, Li

× Fengze, Li

en Fengze, Li

Search repository
Seiichiro, Kamata

× Seiichiro, Kamata

en Seiichiro, Kamata

Search repository
論文抄録
内容記述タイプ Other
内容記述 Breast cancer is the most commonly diagnosed cancer in women, making it a leading cause of cancer-related deaths worldwide. Accurate diagnosis often relies on Whole-Slide Images (WSIs), a key pathological imaging modality that provides detailed visual information for identifying tumor regions. To facilitate this, advanced image segmentation methods have been developed, with convolutional neural networks (CNNs) and Transformers being the most prevalent approaches. However, CNNs often fail to capture long-range dependencies effectively, while Transformer-based methods suffer from high computational complexity. Recently, Mamba, an emerging method based on the state space model, has gained attention for its ability to address these challenges by capturing long-range dependencies with linear computational complexity. Building on this innovation, we propose the Multi-Scan Partitioning Mamba UNet for WSI segmentation. This approach integrates a novel module, the Multi-Scan Partition State Space (MPSS) module, which we introduce in detail. Extensive experiments validate the efficacy of the proposed method in processing WSIs, demonstrating its superiority over existing benchmarks.
論文抄録(英)
内容記述タイプ Other
内容記述 Breast cancer is the most commonly diagnosed cancer in women, making it a leading cause of cancer-related deaths worldwide. Accurate diagnosis often relies on Whole-Slide Images (WSIs), a key pathological imaging modality that provides detailed visual information for identifying tumor regions. To facilitate this, advanced image segmentation methods have been developed, with convolutional neural networks (CNNs) and Transformers being the most prevalent approaches. However, CNNs often fail to capture long-range dependencies effectively, while Transformer-based methods suffer from high computational complexity. Recently, Mamba, an emerging method based on the state space model, has gained attention for its ability to address these challenges by capturing long-range dependencies with linear computational complexity. Building on this innovation, we propose the Multi-Scan Partitioning Mamba UNet for WSI segmentation. This approach integrates a novel module, the Multi-Scan Partition State Space (MPSS) module, which we introduce in detail. Extensive experiments validate the efficacy of the proposed method in processing WSIs, demonstrating its superiority over existing benchmarks.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2025-CVIM-240, 号 1, p. 1-7, 発行日 2025-01-14
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:23:32.963700
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3