ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.66
  3. No.1

Detecting Praising Behavior Based on Multimodal Information in Remote Dialogue

https://ipsj.ixsq.nii.ac.jp/records/241918
https://ipsj.ixsq.nii.ac.jp/records/241918
fdc8a866-5f18-4655-9752-1b9ac30de0a9
名前 / ファイル ライセンス アクション
IPSJ-JNL6601016.pdf IPSJ-JNL6601016.pdf (12.9 MB)
 2027年1月15日からダウンロード可能です。
Copyright (c) 2025 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0
Item type Journal(1)
公開日 2025-01-15
タイトル
タイトル Detecting Praising Behavior Based on Multimodal Information in Remote Dialogue
タイトル
言語 en
タイトル Detecting Praising Behavior Based on Multimodal Information in Remote Dialogue
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文(推薦論文)] multimodal interaction, remote dialogue, praise
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Integrated Basic Sciences, Nihon University
著者所属
Graduate School of Integrated Basic Sciences, Nihon University
著者所属
Graduate School of Integrated Basic Sciences, Nihon University
著者所属
NTT Human Informatics Laboratories, NTT Corporation
著者所属
NTT Human Informatics Laboratories, NTT Corporation
著者所属
College of Humanities and Sciences, Nihon University
著者所属(英)
en
Graduate School of Integrated Basic Sciences, Nihon University
著者所属(英)
en
Graduate School of Integrated Basic Sciences, Nihon University
著者所属(英)
en
Graduate School of Integrated Basic Sciences, Nihon University
著者所属(英)
en
NTT Human Informatics Laboratories, NTT Corporation
著者所属(英)
en
NTT Human Informatics Laboratories, NTT Corporation
著者所属(英)
en
College of Humanities and Sciences, Nihon University
著者名 Toshiki, Onishi

× Toshiki, Onishi

Toshiki, Onishi

Search repository
Asahi, Ogushi

× Asahi, Ogushi

Asahi, Ogushi

Search repository
Shunichi, Kinoshita

× Shunichi, Kinoshita

Shunichi, Kinoshita

Search repository
Ryo, Ishii

× Ryo, Ishii

Ryo, Ishii

Search repository
Atsushi, Fukayama

× Atsushi, Fukayama

Atsushi, Fukayama

Search repository
Akihiro, Miyata

× Akihiro, Miyata

Akihiro, Miyata

Search repository
著者名(英) Toshiki, Onishi

× Toshiki, Onishi

en Toshiki, Onishi

Search repository
Asahi, Ogushi

× Asahi, Ogushi

en Asahi, Ogushi

Search repository
Shunichi, Kinoshita

× Shunichi, Kinoshita

en Shunichi, Kinoshita

Search repository
Ryo, Ishii

× Ryo, Ishii

en Ryo, Ishii

Search repository
Atsushi, Fukayama

× Atsushi, Fukayama

en Atsushi, Fukayama

Search repository
Akihiro, Miyata

× Akihiro, Miyata

en Akihiro, Miyata

Search repository
論文抄録
内容記述タイプ Other
内容記述 Opportunities to remotely communicate have been increasing since the start of the COVID-19 pandemic. Praising behavior is considered an important element of daily life and social activities. However, many people are uncertain about the best way to praise a partner. Such individuals may have difficulty understanding how to behave in order to improve their own praising skills. To solve this problem, we aim to develop a system that automatically evaluates whether a person is praising the other person in a remote dialogue, and reviews the utterances in which the person is praising a partner. As a first step toward achieving this goal, we attempted to detect praising behaviors from speaker's multimodal information in remote dialogues. Specifically, we constructed machine learning models for detecting praising behaviors using a dialogue corpus that contains remote dialogue data and the results of judgments about praising behaviors. As a result, we clarified that the praising behaviors are detectable based on multimodal information in remote dialogues. Furthermore, we clarified that the highest detection performance was achieved with the praiser's linguistic information and the receiver's linguistic information.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.33(2025) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.33.31
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Opportunities to remotely communicate have been increasing since the start of the COVID-19 pandemic. Praising behavior is considered an important element of daily life and social activities. However, many people are uncertain about the best way to praise a partner. Such individuals may have difficulty understanding how to behave in order to improve their own praising skills. To solve this problem, we aim to develop a system that automatically evaluates whether a person is praising the other person in a remote dialogue, and reviews the utterances in which the person is praising a partner. As a first step toward achieving this goal, we attempted to detect praising behaviors from speaker's multimodal information in remote dialogues. Specifically, we constructed machine learning models for detecting praising behaviors using a dialogue corpus that contains remote dialogue data and the results of judgments about praising behaviors. As a result, we clarified that the praising behaviors are detectable based on multimodal information in remote dialogues. Furthermore, we clarified that the highest detection performance was achieved with the praiser's linguistic information and the receiver's linguistic information.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.33(2025) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.33.31
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 66, 号 1, 発行日 2025-01-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
公開者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 07:30:03.344447
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3