{"created":"2025-01-19T01:46:47.343257+00:00","updated":"2025-01-19T07:30:08.647712+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00241902","sets":["1164:2592:11887:11888"]},"path":["11888"],"owner":"44499","recid":"241902","title":["輪番割当問題の密度限界と最頻周期"],"pubdate":{"attribute_name":"公開日","attribute_value":"2025-01-07"},"_buckets":{"deposit":"a7b3aeb6-8662-4c8b-aac7-12e3684fedac"},"_deposit":{"id":"241902","pid":{"type":"depid","value":"241902","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"輪番割当問題の密度限界と最頻周期","author_link":["666799","666798","666797"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"輪番割当問題の密度限界と最頻周期"}]},"item_type_id":"4","publish_date":"2025-01-07","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"京都大学"},{"subitem_text_value":"京都大学"},{"subitem_text_value":"京都大学"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/241902/files/IPSJ-AL25201014.pdf","label":"IPSJ-AL25201014.pdf"},"date":[{"dateType":"Available","dateValue":"2027-01-07"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL25201014.pdf","filesize":[{"value":"882.7 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"59bb0cde-9c92-4ec7-8de2-27a26d37a46a","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2025 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"河村, 彰星"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"草野, 陽介"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"小林, 佑輔"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8566","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"いくつかの仕事を一日に一つずつ行うという状況を考える.輪番割当問題とは,各仕事に定められた頻度条件「連続する○○日に一度以上行わなければならない」という制約を満たしながら仕事を無限に続けられるかを問うものである.この「○○」にあたるものをその仕事の周期といい,これまで輪番割当問題では,密度と呼ばれる各周期の逆数の総和と,条件を満たす仕事の割当可能性との関係性について研究されてきた.例えば,密度 1/2 以下であるような周期の組は,必ず割当可能であることが知られている.この 1/2 のような,割当可能性に対する密度の十分条件を密度限界と呼ぶ.我々は,最も小さい周期すなわち最頻周期が十分大きい場合の密度限界を,周期の実数拡張を考えることで改善した.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"3","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2025-01-07","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"14","bibliographicVolumeNumber":"2025-AL-201"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":241902,"links":{}}